Working with PLLs in PrimeTime
— avoiding the “phase locked oops”

Paul Zimmer

Zimmer Design Services
1375 Sun Tree Drive
Roseville, CA 95661

paulzimmer@zimmerdesignservices.com

website: www.zimmerdesignservices.com

ABSTRACT

PLLs play an important role in modern high-speed designs, especially when configured for clock
tree insertion delay cancellation (IDC). Modeling the behavior of such PLLs accurately in
PrimeTime can be a challenge. This paper discusses basic modeling techniques for both standard
and multiplier IDC PLLs, duty cycle modeling, jitter and skew, and on-chip-variation effects.
The classic OCV/PLL excess pessimism problem will be explained and examined, and a couple
of workarounds will be discussed, including a novel new technique developed by the author.

mailto:paulzimmer@zimmerdesignservices.com
www.zimmerdesignservices.com

Table of contents

1 INEFOTUCTION ...ttt bbb bbbt e b e bbb b nneere s 3
2 The basic insertion delay cancellation (IdC) PLL.........cccoiiiiiiieniiie e 4
2.1 The problem — t00 MUCKN GEIAYcciiieiiiiieiicee bbb et b bbb e e enennenea 4
2.2 The solution — the insertion delay cancellation PLLccoooiiiiiiiiiiiiee e 5
2.3 Timing the Dasic idC PLL iN PrIMETIMEc.oiiiiiieiie ettt bbb nne e 6
2.4 The IDC MUIIPHEE PLL ..eviiitiiteieeteiteee ettt b bbbt b bbb bbbt b et nn e 15
ST I LT o I 0 o To T £ OO 2324
2.6 Performance CONSTARTALIONSiuiiiuirieietiit ettt bbbt b et bbb e ettt 2425
3 DULY CYCIE ..t 2526
3.1 Internal cloCKS (OtNEr thAN PLLS).......ctitiiitiiiiiitirieietent ettt 2526
3.2 Primary iNPUt CIOCKS BN0 PLLScviiiiiiitiicieire ettt 2728
3.3 Applying this to our multiplier PICIFCUIT ..ot 343533
3.4 When t0 USE theSe tECHNIGUESeieieiieieie ettt sttt ste bbb se e e e eeneennas 404139
N 1 1 -] ST 414240
4.2 Jitter, SKEW, NG UNCEITAINTYcviiieiieresieetieieeieie ettt e et st st eene et e seesbeseesbesreeneeseeneeneeneennes 414240
4.2 MY defiNItION OF JITEEE .o.vviiiiiicc ettt st st reene e s e et e aeseeneas 414240
e S ToTU ol 1S o) 1 SRS 424341
4.4 Effects of jitter on different sorts 0f PAthscooiiiiiiiii s 424341
4.5 Modeling jitter with set_CIOCK_UNCEIMAINTY........cceiiiiiieiieiiciite et 464745
4.6 Applying jitter specs to the example Circuit — SIMPIE CASEcoiveiiiriiiiirci e 464745
4.7 GENEIALEA ClOCKS. ... viiiiieiiite ettt ettt ettt e et e e be e be e st e s teesteesbeesbeesbeenbeenseebsesbeesbeesbeeseesnnenneas 535452
4.8 What aboUL FAllING EAGES?.. .. ettt ettt st st beeneese e e e aeneeneas 555654
4.9 Applying jitter specs to the example Circuit — COMPIEX CASEcoveviiriiiiirieiceee e 565755
5 ON-ChIP VAALION ...ttt 636462
5.1 THE ClASSIC OCV CASEvviiveeiieeiteiie ettt et e ste e rte e te st e st e s te e sbeesbeebeeateabsesbeeebeebeesbeaseesbeesbeesbeenbeenresnsesbeereens 636462
B2 ENEET CRPR ...ttt ettt e e st e e e e e et e e e e e s et ee e s e s se e s es e e et e s e s e e et s et eee s e eeenean 666765
5.3 OCV NG PLLS ...ttt e e e e e e e e e e e s e s e s e e ee e s es s s e s se e s esseeesee e s s et ene et s erenenn 686967
5.4 The OCV/PLL excess pessimism PrODIEMcocieiiiie it 747573
6 OCV/PLL excess pessimism WOrKarOUNGS...........ccuevererererienieneneseeeee e 1849++
6.1 Forcing OCV off 0N the D Pathoeeee s 787977
6.2 Referencing the i/0s t0 the feedback CIOCKcooveiiiiiii e e 959694
6.3 The SNEIl GAME ... bbb et b e bttt se et b et nneneas 103165103
T CONCIUSTON ..ttt bbbttt b b 1103431109
8 ACKNOWIEAGEMENTS. ... 111332110
O RETEIBNCES ...ttt 112313111
10 N 0] 6 1<] Lo | L OSSP UP PPN 113134112
10.1 The PLL MOl ESEIT ...t ettt e eneere e e e nee e 113314112
10.2 WHY 1O TE MY WY ...ttt etttk b ettt b et bbb bbbt b e 128130128
10.3 Modeling duty cycle using set_clock_latency early/late ..o 1291306128
10.4 Modeling duty cycle using set_clock_latency Min/MaX..........cccoceoeireneieneneiineneie e 133135133

SNUG San Jose 2005 2 Working with PLLs in PrimeTime

1 Introduction

PLLs are an absolutely essential tool in high-speed design. Their ability to nearly zero out the
delay of a large clock tree allows for much higher speed inter-chip communication.

However, modeling PLLSs in static timing analysis is tricky. Many of the details have been
glossed over or ignored in the past, but as circuit feature sizes decrease and speeds increase, it is
no longer acceptable to depend on over-constrained budgets or just plain dumb luck to be sure
the PLL will work in the intended application. Certain effects, such as on-chip variation and
signal integrity analysis, make correct operation of the circuit absolutely dependent on a
complete, accurate static timing analysis — and this includes the PLL.

SNUG San Jose 2005 3 Working with PLLs in PrimeTime

2 The basic insertion delay cancellation (idc) PLL

PLLs are common in modern high-speed designs. The inner workings of the pll are more the
domain of analog sorcerers, but the basic idea is this: “the pll makes its output do whatever is
necessary to make its ref and fb inputs match in phase and frequency”.

There are many uses for PLLS. The one I'll be discussing here is what I call the “insertion delay
cancellation” pll.

2.1 The problem — too much delay

Here is a very basic i/o circuit. Data and clock are sent in and data comes out. The outgoing data
is clocked externally by the same clock that is sent to the circuit.

din[> dfnpac
dout_reg doutpad [T dout

Elkf”l:} clkinpad clitree

Figure 2-1

And here’s what the timing waveform looks like:

Tsu

\4

tkn] \ |
dn] \ I
clkin_pad |

] \
chin tree | 1\
dout_reg |\'
dout |

Figure 2-2

It is clear that all of the delays in generating the data (clock pad, clock tree insertion delay, etc)

SNUG San Jose 2005 4 Working with PLLs in PrimeTime

will reduce the available setup time of dout and therefore limit the frequency of operation.

2.2 The solution — the insertion delay cancellation PLL

To get around this problem, designers often insert a PLL into the clock path. The configuration
looks like this:

dout_rec
':lki'_'l::} elk frpad Ref

Out
clktres
A m PLL
Tref

Figure 2-3 Tfb

The Fb input of the pll is connected to the end of the clock tree.

Remember that the pll must drive its output such that its ref and fb inputs match in phase and
frequency. The frequency part is easy — it just matches clkin’s frequency, which reappears on the
Fb pin. What about the phase?

Ignore Tref for now. If the clock at Ref arrived at time zero, the pll would have to drive its
output back in time by Tfb to make the signal arrive at the Fb pin at time zero. So, it would
launch the clock at time —Tfb. But, clkin appears at the pll Ref pin at time Tref. So, the pll
doesn’t have to drive its output back by the full Tfb, but only by Tfb — Tref. In other words, it
launches its clock at time Tref — Tfh. After passing through the feedback loop, the clock arrives
at the Fb input at time Tref, which is what we want.

SNUG San Jose 2005 5 Working with PLLs in PrimeTime

The net effect of this is that the flops on the end of the clock tree get clocked at almost time zero.
They get clocked at time Tref. If we add a little extra delay to the feedback path to match Tref,
we can get the flops clocked at time zero relative to clkin. This allows us to “cancel” the
insertion delay of the clock tree. So, a more realistic idc pll might look like this:

clkin[> clk Lnpad

Jout_rec

PLL cslk tree

ma tchbufl matchbhuofz

Figure 2-4

2.3 Timing the basic idc PLL in PrimeTime

So, how do we go about modeling this in Primetime? The most straightforward approach
(although not the only approach, as we shall see later) is to model what happens in real life —
create a clock on the pll output pin with a frequency to match clkin, and then “launch” this pll
output clock at time Tref-Tfb. We then allow the two clocks to time against one another. The
“launch” is accomplished with the set_clock latency command, so the commands would look
something like this:

create_clock -period 10.0 -name clkin [get ports clkin]
set_propagated clock clkin

create_clock -period 10.0 -name pllout [get pins PLL/OUT]
set propagated clock pllout

set_clock latency -source \
[expr $ ref delay - $ fb delay] \
[get_clocks pllout]

The problem is, how do we get the values of $_ref delay and $_fb_delay?

Reference [4] gives one approach. | use a different approach. | use get_timing_paths to get the
values. | think mine is simpler to code. It also takes advantage of the fact that, by creating all the
clocks first, it is possible to extract the feedback delay as an arrival attribute on the fb pin. Also,
reference [4] puts the values into files that are then sourced by multiple Primetime runs. I’m not
that trusting, so | force PT to calculate the value every time the script runs.

SNUG San Jose 2005 6 Working with PLLs in PrimeTime

My approach is like this:

1.
2.
3.

4.
5.

Create all the clocks, including the pll output clock (but don’t set the source latency yet).
Get Tref and Tfb using get_timing_paths.

Calculate the source latency (Tref — Tfb) and apply it to the pll output clock. The source
latency value will usually be negative.

Use set_input_delay and set_output_delay with the reference clock to specify the i/o timing.
Allow the clocks to time against each other (don’t do set_false path between them)

Here’s an example circuit. I have added a flip-flop on the end of the clock tree. The flop clocks
data in through the din pad, and sends data out through the dout pad. Notice also that this flop is
on a slightly different branch of the clock tree than the one the pll feedback is hooked up to.
They share clktree_root, but not clktreel (to the flop) or clktree2 (to the pll feedback).

di"'D dfnpac

dout_reg

doutpad DdUUt

lei”D clk lrpad

PLL Clktree_root clhktree=l

Tref

ik tree=2 Fhdelay

Figure 2-5

Tfb

First, we’ll create the clocks. Doing this first makes it easier to get the delay values we want:

create_clock -period 10.0 -name clkin [get ports clkin]
set_propagated clock clkin

create clock -period 10.0 -name pllout [get pins PLL/OUT]
set propagated clock pllout

SNUG San Jose 2005 7 Working with PLLs in PrimeTime

Because the clocks exists, we can get the timing values we want by just getting the “arrival”
attribute on the path:

set path [get timing paths -delay max rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set ref delay [get_ attribute $ path arrival]

set path [get_ timing paths -delay max rise \
-from [get_pins PLL/OUT] \
-to [get _pins PLL/FB] \

]

set fb delay [get_attribute $ path arrival]

Note the use of “-delay max_rise”. We want a rise delay because the pll runs on rising edges
(most do, anyway). Without on-chip-variation (OCV), the min_rise and max_rise values should
be the same. OCYV effects will be discussed later.

Also note that _ref _delay is set by getting the arrival attribute on the path returned by
get_timing_paths, which is a collection. | expect this collection to have only one path in it. If |
have done something wrong and the collection has more than one path, the “set ref delay”
command will cause an error. | call this poor-man’s error checking...

When | run this script, | get:

pt shell> echo $ ref delay
1.000000

pt shell> echo $ fb delay
3.300000

pt _shell>

SNUG San Jose 2005 8 Working with PLLs in PrimeTime

Let’s verify this using report_timing. We’ll need to set the variable
timing_report unconstrained paths to “true” to see a result.

pt _shell> set timing report unconstrained paths true
true
pt_shell> report timing -input pins -delay max rise -from [get ports clkin] -
to [get pins PLL/CKREF]
R R IR b b dh b b dh Sb b 2 dh b b Sh Sh b S Ih b b 2h b b 2 Sh b b Sh Sb b 2 db b dh b 4
Report : timing
-path full
-delay max_rise
-input pins
-max paths 1
Design : idc_pll example
Version: V-2004.06

KKK AKRKAAKRA A KRR AR AR A A AR A AR A AR A A A XA A XA A XK kXK

Startpoint: clkin (clock source 'clkin')
Endpoint: PLL/CKREF (internal pin)

Path Group: (none)

Path Type: max

Point Incr Path
clock source latency 0.00 0.00
clkin (in) 0.00 0.00 r
clkinpad/I (bufbdl) 0.00 0.00 r
clkinpad/z (bufbdl) 1.00 * 1.00 r
PLL/CKREF (DUMMYPLL) 0.00 1.00 r
data arrival time 1.00

(Path i1s unconstrained)

SNUG San Jose 2005 9 Working with PLLs in PrimeTime

pt shell> report timing -input pins -delay max rise -from [get pins PLL/OUT] -

to [get pins PLL/FB]

Kk kK Kk Kk Kk kK ok ok kK Kk k kK k ok ok Kk Kk ok ko k kK K kR k k ok ok ok

Report timing

-path full
-delay max_rise
-input pins

-max paths 1
Design idc pll example

Version: V-2004.06

KKK AKRKAAKRA A KRR AR AR A AR A AN A A AR A A A A AR XA AR KXk K

Startpoint: PLL/OUT (clock source
Endpoint: PLL/FB (internal pin)
Path Group: (none)

Path Type: max

'pllout"')

clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
fbdelay/I (bufbdl)
fbdelay/Z (bufbdl)
PLL/FB (DUMMYPLL)

data arrival time

(Path 1is unconstrained)

Looks correct. $ ref delayis 1.0 and $_fb_delay is 3.3.

Now we’ll apply this source latency:

set_clock latency -source \
[expr $ ref delay - $ fb delay] \
[get_clocks pllout]

When we do this, we’ll get the following warning:

Warning: Negative clock latency specified:

-2.3

(UITE-150)

This is harmless. We normally expect a negative source delay on the pll output clock (because

the fb path is usually longer than the refclk path).

SNUG San Jose 2005 10

Working with PLLs in PrimeTime

To make sure we got what we wanted, do report_clock —skew:

pt _shell> report clock -skew

Kk K ok Kk ok kK k ok ok k ok Kk ok ok kK kK k ok ok k ok Kk ok ok k kK kK ok kK ok
Report : clock skew

Design : idc_pll example

Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Min Condition Source Latency Max Condition Source Latency
Object Early r Early f Late r Late f Early r Early f Late r ©Late f Rel clk
pllout -2.30 -2.30 -2.30 -2.30 -2.30 -2.30 -2.30 -2.30

Just to make absolutely sure this all worked, here’s some code that verifies that the arrival time at
the CKREF pin matches the arrival time at the FB pin within some small rounding error:

Verify

Get the new fb path delay

set path [get timing paths -delay max rise \
-to [get_pins PLL/FB] \

]

set new fb delay [get attribute $ path arrival]

Get the ref clock delay

set path [get timing paths -delay max rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set new ref delay [get attribute $ path arrival]
set diff [expr S new ref delay - $ new fb delay]
if { (S diff > 0.01) || (S diff < -0.01)

FoA

echo "Error: Difference between FB and REF pins out of range!"
echo " Difference is $ diff"

echo " ref delay is $ ref delay"
echo " fb delay is $ fb delay"
} else {

echo "PLL timing verified!"

}

When we run this, we get:

PLL timing verified!

SNUG San Jose 2005 11 Working with PLLs in PrimeTime

Now we need to constrain the data paths. The din/dout paths are part of an interface that is
referenced to clkin, so we’ll set the input and output delays accordingly.

set_input delay -max 8.0 -clock clkin [get_ports din]

set_input delay -min 0.5 -clock clkin [get_ports din]
set_output_delay -max 2.0 -clock clkin [get ports dout]
set_output_delay -min [expr -1.0 * 0.5] -clock clkin [get_ports dout]

Now let’s look at the timing. Here’s the schematic again, with the delays of each buffer shown:

1.2
dinD dfnpac— | -
dout_reg dau tpad Ddaut
hin[>—Eik: —
: " @ PLL _cl'k_tree_rﬁf’letrBe_j_,_ u
2.5
1.0 \J _/
2-2 _OTg—Elk‘trEE__Z—thElay
NG
. N—" ——"
Figure 2-6 0.1 1.0

A couple of things to notice about this. I have made the fbdelay match the clkinpad delay
exactly, but the clktree_1 and clktree 2 buffers don’t match exactly. The clock tree has 0.2ns of

real skew.

SNUG San Jose 2005 12 Working with PLLs in PrimeTime

First we’ll look at the din timing:

pt _shell> report timing -input pins -path type full clock expanded -from din
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : idc_pll example
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: din (input port clocked by clkin)

Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)
Path Group: pllout

Path Type: max

clock clkin (rise edge)
clock network delay (propagated)

0 0
0 0
input external delay 8.00 8.00 r
din (in) 0.00 8.00 r
dinpad/I (bufbdl) 0.00 8.00 r
dinpad/Z (bufbdl) 1.20 * 9.20 r
dout_reg/D (dfnrbl) 0.00 9.20 r
data arrival time 9.20
clock pllout (rise edge) 10.00 10.00
clock source latency -2.30 7.70
PLL/OUT (DUMMYPLL) 0.00 7.70 r
clktree root/I (bufbdl) 0.00 7.70 r
clktree root/Z (bufbdl) 2.20 * 9.90 r
clktree 1/I (bufbdl) 0.00 9.90 r
clktree 1/Z (bufbdl) 0.30 * 10.20 r
dout reg/CP (dfnrbl) 0.00 10.20 r
library setup time -0.08 10.12
data required time 10.12
data required time 10.12
data arrival time -9.20
slack (MET) 0.92

If the insertion delay cancellation were perfect, we would expect the clock to arrive at
dout_reg/CP at time 10.0 (one full period of the clock). Instead, it arrives at 10.2. Why?
Because the clock tree had skew. The clktree 2 buffer was 0.2ns faster than the clktree 1 buffer.
This means the feeback delay from the pll was slightly less than it should have been, resulting in
a late arriving clock.

SNUG San Jose 2005 13 Working with PLLs in PrimeTime

Now let’s look at the dout timing:

pt _shell> report timing -input pins -path type full clock expanded -to dout

Kk K K Kk Kk k kK k ok ok Kk Kk Kk kK k ko Kk Kk ok ko ok ok K Kk kK k ok ok ok

Report timing

-path full clock expanded

-delay max

-input pins

-max paths 1
Design idc pll example
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout (output port clocked by clkin)

Path Group: clkin
Path Type: max

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
dout reg/CP (dfnrbl)
dout reg/Q (dfnrbl)
doutpad/I (bufbdl)
doutpad/z (bufbdl)

dout (out)

data arrival time

clock clkin (rise edge)

clock network delay (propagated)

output external delay
data required time

N
(@]
FhFhFhFhB B B B BB

data required time
data arrival time

slack (MET)

In this case, we’re launching data from the pll domain and capturing it in the clkin domain.
So, the capture clock is at 10.0. But the launch clock at dout_reg/CP is 0.20 — once again it is
0.2ns late (for the same reason explained above).

Both of these path reports are correct — we have modeled the pll behavior correctly.

SNUG San Jose 2005

14

Working with PLLs in PrimeTime

2.4 The IDC multiplier PLL
Now lets try a slightly more complicated example. Consider this circuit:

I > clkZxoot
den[>

dippad
dout_reg dautpad > dout

dlfvider res—iitree_faod olk tresct

elktn[> &k prpdd ; "
PLL clktree 2%

clktree=2 fhdelay
Figure 2-7

Remember that the pll must drive its output such that its ref and fb inputs match in phase and
frequency. Since there is a divide-by 2 in the fb path, the pll will have to drive its output at twice
the frequency of clkin to make the frequency match at the fb pin. This is a frequency multiplier

pll.

There are several reasons why you might want to do this. You might need the 2x clock internally
for other functions, for example. In that case, the i/os would be connected to the divide-by
output. Or you might be doing something really wierd, like running the data at 2x speeds
anchored by the 1x reference clock.

How do we model this in PrimeTime? Well, it turns out that the procedure outlined above still
works. Here’s the circuit again with all the delays shown:

Dnllﬁzxaut
din[=
dippac
0.32 daout_req douftpad > dout
divigder _Pig 14 E

1k E 1 /{_>_ clktree_root clktrescl

[= /- Q"; PLL ciktree 2% U
1.0]}j 2.2 oK trEetE fhdelay

Figure 2-8 0.1 1.0

The first step was, “create all the clocks”. The first two clocks are the same as before, except
that the period of the pll clock is now half that of clkin:

create_clock -period 10.0 -name clkin [get_ports clkin]
set propagated clock clkin

create clock -period [expr 10.0 / 2] -name pllout [get pins PLL/OUT]
set propagated clock pllout

SNUG San Jose 2005 15 Working with PLLs in PrimeTime

But there’s another clock here. The divide-by 2 flop output is also a clock. It is a generated
clock from pllout, with a divide-by of 2:

create generated clock \
-source [get pins PLL/OUT] \
-name diveclk \
-divide by 2 \
[get _pins divider reg/Q]
set_propagated clock divclk

Now we need to fetch the Tref and Tfb values.

set path [get timing paths -delay max rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set ref delay [get_attribute $ path arrival]

set path [get timing paths -delay max rise \
-from [get_pins PLL/OUT] \
-to [get_pins PLL/FB] \
]

set fb delay [get_attribute $ path arrival]
echo $ fb delay

But if we look at the result, there’s a problem:

pt shell> echo $ ref delay
1.000000
pt shell> echo $ fb delay

pt _shell>

Let’s look at the timing reports for the tb path.

pt _shell> set timing report unconstrained paths true
true
pt _shell> report timing -delay max rise -from [get pins PLL/OUT] -to
[get _pins PLL/FB]
R R b b b b b b Sh b 2 Sh I b 2h Sh I S eh b b 2h b b 2 Sh b b Sh Sh b 2h db b b 2h Ib o 4
Report : timing
-path full
-delay max_rise
-max paths 1
Design : idcm pll example
Version: V-2004.06

LR IR R e S b I S b I Sb b I S b I b b S b S S S db I Sh b S b S b I S b

No Paths.

The path no longer exists. That’s because the divider flop is breaking the path.

SNUG San Jose 2005 16 Working with PLLs in PrimeTime

Try again with just the pll FB pin endpoint:

pt _shell> report timing -delay max rise
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4

Report timing
-path full
-delay max_rise
-max paths 1
Design idcm pll example

Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: divider reg/Q

(clock source 'divclk')

Endpoint: PLL/FB (internal pin)
Path Group: (none)

Path Type: max

Point

-to [get pins PLL/FB]

clock source latency
divider reg/Q (dfnrbl)
clktree root/Z (bufbdl)
clktree 2/7Z (bufbdl)
fbdelay/Z (bufbdl)
PLL/FB (DUMMYPLL)

data arrival time

jusjiyasias

(Path i1s unconstrained)

But is this correct? Let’s see where the “clock source latency” comes from:

pt _shell> report timing -delay max rise
to [get pins divider reg/Q]

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

Report timing

-path full

-delay max_rise

-max paths 1
Design idem pll example
Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

Startpoint: divider reg

-from [get pins divider reg/CP] -

(rising edge-triggered flip-flop clocked by pllout)

Endpoint: divider reg/Q
(internal pin)

Path Group: (none)
Path Type: max
Point

clock network delay (propagated)
divider reg/CP (dfnrbl)

divider reg/Q (dfnrbl)

data arrival time

(Path is unconstrained)

SNUG San Jose 2005 17

Working with PLLs in PrimeTime

pt_shell> report timing -delay max rise -from [get pins
divider reg/CP] -input pins
R R SR b b dh b b dh Sh b dh dh b b Sh S b S Sh b b db b b 2 Sh b b dh A Sb b dh db b db b o 4
Report : timing
-path full
-delay max_rise
-input pins
-max paths 1
Design : idcm pll example
Version: V-2004.06

KKK AKRKAAKRKA A KRR AR A AR A AR A AR A AR A A A A AR XA A XK XXk

Startpoint: PLL/OUT (clock source 'pllout')
Endpoint: divider reg/CP
(internal pin)
Path Group: (none)
Path Type: max

PLL/OUT] -to [get pins

Point Incr Path
clock source latency 0.00 0.00
PLL/OUT (DUMMYPLL) 0.00 0.00 r
clktree_Zx/I (bufbdl) 0.00 0.00 r
clktree_Zx/Z (bufbdl) 1.50 ~* 1.50 r
divider reg/CP (dfnrbl) 0.00 1.50 r
data arrival time 1.50

(Path 1is unconstrained)

So, the source latency of 1.82 is the prop delay from the PLL/OUT pin to the divider_reg/CP pin
(1.50) plus the CP->Q rise delay through the divider flop (0.32). That’s correct.

SNUG San Jose 2005 18

Working with PLLs in PrimeTime

We can see this more clearly if we use —path_type full_clock_expanded with just the endpoint:

pt shell> report timing -delay max rise -to [get pins PLL/FB] -path type

full clock expanded

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Report timing
-path full clock expanded
-delay max_rise
-max paths 1
Design idem pll example
Version: V-2004.06-SP1

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: divider reg/Q

(clock source 'divclk')

Endpoint: PLL/FB (internal pin)
Path Group: (none)

Path Type: max

Point

clock pllout (source latency)
PLL/OUT (DUMMYPLL)
clktree 2x/7Z (bufbdl)
divider reg/Q (dfnrbl) (gclock source)
divider reg/Q (dfnrbl)

clktree root/Z (bufbdl)

clktree 2/7Z (bufbdl)

fbdelay/Z (bufbdl)

PLL/FB (DUMMYPLL)

data arrival time

(Path is unconstrained)

So, let’s try the fb_delay code without the —from switch:

set path [get timing paths -delay max rise \

-to [get_pins PLL/FB] \
]

set fb delay [get_attribute $ path arrival]

And the value is now correct:

pt shell> echo $ fb delay
5.120000
pt shell>

SNUG San Jose 2005 19

Working with PLLs in PrimeTime

If a simple “—to” is too open-ended for your taste, it turns out that you also get the correct result

when you do “-from [get pins divider reg/Q]”, like this:

set path [get timing paths -delay max rise \

-from [get_pins divider reg/Q] \
-to [get _pins PLL/FB] \
]

set fb delay [get_attribute $ path arrival]

pt shell> echo $ fb delay
5.120000
pt shell>

Now we can apply the source latency as before:

Set the source latency

set_clock_ latency -source \
[expr $ ref delay - $ fb delay] \
[get_clocks pllout]

The resulting latency should be -4.12 (1.0 — 5.12):

pt _shell> report clock -skew

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

clock skew
idem pll example
V-2004.06

Report
Design
Version:

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Min Condition Source Latency

Early r Early f

Max Condition Source Latency

Object Early r Early f Late r Late f
pllout -4.12 -4.12 -4.12 -4.12
divelk 1.82 1.82 1.82 1.82
Looks right.

SNUG San Jose 2005

20

Late_r Late f Rel clk
-4.12 -4.12
1.82 1.82

Working with PLLs in PrimeTime

The verify code will similarly have to change (remove the —from from the fb path or replace with
the —from the divider_reg):

Verify

Get the new fb path delay

set path [get timing paths -delay max rise \
-to [get pins PLL/FB] \

]

set new fb delay [get attribute $ path arrival]

Get the ref clock delay

set path [get timing paths -delay max rise \
—-from [get ports clkin] \
-to [get pins PLL/CKREF] \

]

set new ref delay [get attribute $ path arrival]
set diff [expr $ new ref delay - $ new fb delay]
if { (S_diff > 0.01) || ($_diff < -0.01)

oA

echo "Error: Difference between FB and REF pins out of range!"
echo " Difference is $ diff"

echo " new ref delay is $ new ref delay"
echo " new fb delay is $ new fb delay"
} else {

echo "PLL timing verified!"

}

And the verify works:

PLL timing verified!

Apply the i/o constraints as before:

set_input delay -max 8.0 -clock clkin [get_ports din]

set_input delay -min 0.5 -clock clkin [get_ports din]
set_output_delay -max 2.0 -clock clkin [get ports dout]
set_output_delay -min [expr -1.0 * 0.5] -clock clkin [get_ports dout]

Now let’s look at some i/0 timing:

pt _shell> report timing -input pins -path type full clock expanded -from din
R R I b b b b b I I Sh b b 2h Sh b 2 Ih b b 2h b I 2 Sh b b SR ab b 2h dh b b 2h Ib o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : idcm pll example
Version: V-2004.06

LR IR R e S b I b b I Sb dE I S b I Sb b S S S S I S Jb I Sh b S b I S b I S b

SNUG San Jose 2005 21 Working with PLLs in PrimeTime

Startpoint: din
Endpoint: dout reg
Path Group: divclk
Path Type: max

(input port clocked by clkin)
(rising edge-triggered flip-flop clocked by divclk)

clock clkin (rise edge)
clock network delay (propagated)
input external delay

din (in)
dinpad/I (bufbdl)
dinpad/Z (bufbdl)

dout reg/D (dfnrbl)
data arrival time

clock divclk (rise edge)
clock pllout (source latency)
PLL/OUT (DUMMYPLL)
clktree 2x/I (bufbdl)
clktree 2x/7Z (bufbdl)
divider reg/CP (dfnrbl)
divider reg/Q (dfnrbl) (gclock source)
clktree root/I (bufbdl)

clktree root/Z (bufbdl)

clktree 1/I (bufbdl)

clktree 1/Z (bufbdl)

dout reg/CP (dfnrbl)

library setup time

data required time

.00
.12
.00
.00
.50
.00

.32
.00
.20
.00
.30
.00
.08

O W W oWowoo
e

~N J 00O o

o
o
[n L T o B B

E B KRB

EBRBRHB

data required time
data arrival time

slack (MET)

Notice that the slack is exactly the same as it was with the earlier non-multiplying idc pll
example. This is to be expected. | made the pll run at 2x, but then clocked dout_reg with the
divide-by 2 clock, so nothing changed relative to the i/o timing. Extra delay in the clock path
(the divider) is just “insertion delay” and gets cancelled out by the pll.

The same is true of the dout path:

pt shell> report timing -input pins -path type full clock expanded -to dout

Kk AR A KKKk h ok ok kA Kk k ok kkk k& &k Kk kkokk ok k& kk Kk kkkk

Report timing

-path full clock expanded
-delay max

-input pins

-max paths 1

Design idem pll example
Version: V-2004.06

LRI R e S b I b b I Sb IE I S b I Sb b S b S S I S db I Sh b S b I S b I S b

SNUG San Jose 2005 22

Working with PLLs in PrimeTime

Startpoint: dout reg (rising edge-triggered flip-flop clocked by divclk)
Endpoint: dout (output port clocked by clkin)

Path Group: clkin

Path Type: max

Point Incr Path
clock divclk (rise edge) 0.00 0.00
clock pllout (source latency) -4.12 -4.12
PLL/OUT (DUMMYPLL) 0.00 -4.12 r
clktree 2x/I (bufbdl) 0.00 -4.12 r
clktree 2x/7Z (bufbdl) 1.50 * -2.62 r
divider reg/CP (dfnrbl) 0.00 -2.62 r
divider reg/Q (dfnrbl) (gclock source)

0.32 * -2.30 r
clktree root/I (bufbdl) 0.00 -2.30 r
clktree root/Z (bufbdl) 2.20 * -0.10 r
clktree 1/I (bufbdl) 0.00 -0.10 r
clktree 1/Z (bufbdl) 0.30 * 0.20 r
dout_reg/CP (dfnrbl) 0.00 0.20 r
dout_reg/Q (dfnrbl) 0.32 * 0.52 r
doutpad/I (bufbdl) 0.00 0.52 r
doutpad/Z (bufbdl) 2.50 * 3.02 r
dout (out) 0.00 3.02 r
data arrival time 3.02
clock clkin (rise edge) 10.00 10.00
clock network delay (propagated) 0.00 10.00
output external delay -2.00 8.00
data required time 8.00
data required time 8.00
data arrival time -3.02
slack (MET) 4.98

2.5 The PLL model itself

Up to this point, [haven’t talked about the model of the PLL itself. In the examples above, the
model was an “empty shell” like this:

module DUMMYPLL (
OuUT,

FB,

CKREF

) 7

output OUT;
input CKREF;
input FB;
endmodule

It could also have been allowed to default to a “black box” by Primetime. The results would be
the same.

SNUG San Jose 2005 23 Working with PLLs in PrimeTime

This works fine if the flow uses SDF, but with parasitics this isn’t sufficient. When using
parasitics, Primetime needs to know more about the driving and load characteristics of the PLL
itself. This requires a model of the PLL itself, which can be a bit tricky. This is covered in
appendix 10.1 If you’re using parasitics, please read this appendix carefully.

2.6 Performance considerations
Recall that the basic flow outlined above was:

1. Create all the clocks, including the pll output clock (but don’t set the source latency yet).

2. Get Tref and Tfb using get_timing_paths.

3. Calculate the source latency (Tref — Tfb) and apply it to the pll output clock. The source
latency value will usually be negative.

4. Use set_input_delay and set_output_delay with the reference clock to specify the i/o timing.
5. Allow the clocks to time against each other (don’t do set_false path between them)

And we could add another:

6. Run the verify code to ensure that the arrival time at CKREF matches the arrival time at FB.
The drawback to this is performance. Steps 2 and 6 cause timing updates. Once you have
confidence in the flow, you could always turn off step 6. But step 2 always causes a timing
update.

That’s not a big problem if you only have 1 pll. But if you have several, you’ll want to structure

the code such that step 1 covers all clocks of all PLLs, step 2 fetches all Tref and Tfb values for
all pll, etc. The code is much harder to read, but the performance impact can be very noticeable.

SNUG San Jose 2005 24 Working with PLLs in PrimeTime

3 Duty Cycle

The term duty cycle refers to the percent of time that the clock signal is high. It matters when
signals are sampled on the falling edge of the clock. We will examine two cases: internal clocks
and primary input clocks / plls.

3.1 Internal clocks (other than PLLS)

It is important to note that PT will handle the duty cycle calculations without user intervention
for most internally-generated clocks. For example, take the 2x multiplier pll circuit shown above
and add add another flop in the data path. The first flop (din_reg) will be clocked by the pll
divide-by 2 output as before. But the second flop (dout_reg) will be clocked by an inverted
version of this clock.

[T clk2xout
den[>
dingac
din_req
divider_reg clftrce_dant elktreall fout_reg dgubpsd > dout
clk e[gtk rrpaa S - - - 1 F
LA pLL [Elkkreeiix
Inverter
olktrastld fhdalay

Figure 3-1

The script to handle this is exactly the same as before. To illustrate the effect, I will force the rise
and fall delays of the divider_reg to be different:

set annotated delay -cell -from divider reg/CP -to divider reg/Q -rise 0.32
set _annotated delay -cell -from divider reg/CP -to divider reg/Q -fall 0.20

Since the signal falls more quickly than it rises, the high time will by reduced.

Now, report the timing between the 2 flops:

pt shell> report timing -from din reg -to dout reg -path type
full clock expanded -input pins
R R IR b 2 db b db Sb b dh dh I b db S b d Ih b b db Ib b 2 Sh b dR Sb b 2 db b i db b 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max_paths 1
Design : duty cycle internal

Version: V-2003.12-SP1
R I S I I 2 b b b b b b I e b b b b b b b e 2 b b b b b db S d 2 b b b (b b b i 4

SNUG San Jose 2005 25 Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by divclk)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by divclk')
Path Group: divclk

Path Type: max

Point Incr Path
clock divclk (rise edge) 0.00 0.00
clock pllout (source latency) -4.12 -4.12
PLL/OUT (DUMMYPLL) 0.00 -4.12 r
clktree 2x/I (bufbdl) 0.00 -4.12 r
clktree 2x/7Z (bufbdl) 1.50 * -2.62 r
divider reg/CP (dfnrbl) 0.00 -2.62 r
divider reg/Q (dfnrbl) (gclock source)

(II;”* -2.30 r
clktree root/I (bufbdl) 0.00 -2.30 r
clktree root/Z (bufbdl) 2.20 * -0.10 r
clktree 1/I (bufbdl) 0.00 -0.10 r
clktree 1/Z (bufbdl) 0.30 * 0.20 r
din_reg/CP (dfnrbl) 0.00 0.20 r
din_reg/CP (dfnrbl) 0.00 0.20 r
din_reg/Q (dfnrbl) <- 0.32 0.52 r
dout_reg/D (dfnrbl) 0.00 0.52 r
data arrival time 0.52
clock divclk' (rise edge) 5.00
clock pllout (source latency) -4~ 0.88
PLL/OUT (DUMMYPLL) 0.00 0.88 r
clktree_Zx/I (bufbdl) 0.00 0.88 r
clktree_Zx/Z (bufbdl) 1.50 ~* 2.38 r
divider reg/CP (dfnrbl) 0.00 2.38 r
divider reg/Q (dfnrbl) (gclock source)

‘II!D * 2.58 £
clktree_root/I (bufbdl) 0.00 2.58 f
clktree root/Z (bufbdl) 2.20 * 4.78 £
clktree inv/I (inv0d2) 0.00 4.78 £
clktree inv/ZN (inv0d2) 0.03 4.81 r
dout reg/CP (dfnrbl) 0.00 4.81 r
library setup time -0.08 4.73
data required time 4.73
data required time 4.73
data arrival time -0.52
slack (MET) 4.21

A couple of things to notice about this trace. First, the capture edge is divclk™ at time 5.0. The
refclk period is 10.0. We’re running the pll as a 2x multiplier, so its period is 5.0. These flops
are on the div_clk, which is divide-by-2 on the pll — which gives it a period of 10.0. So the fall
edge of divclk is at 5.0 — we’re timing a half-cycle path.

The second thing to notice is that the capture clock uses the fall edge through divider_reg/CP-
>Q. Since this is set to 0.20 (instead of 0.32 for the rise edge), the capture clock will occur
0.12ns sooner. This reflects the non-ideal duty cycle of the generated clock. The effect will be to
reduce the slack on this rise-to-fall path.

SNUG San Jose 2005 26 Working with PLLs in PrimeTime

The important thing to notice, however, is that the duty cycle effect is handled automatically by
the tool.

3.2 Primary input clocks and PLLs

Primary input clocks and pll output clocks are not handled automatically by the tool, since it
can’t deduce what the effect would be. You have to tell it via the —~waveform option on
create_clock. But there’s a snag. The incoming clock (or the pll output clock) spec doesn’t tell
you that the duty cycle is, say, “55%”. It usually says the duty cycle is, say, 50% +/- 5%. For
internal clocks, the duty cycle is what it is, but for primary input clocks and pll output clocks, it’s
a range.

Let’s take this simple example:

din[>
din_reg
drnegl_reg
dnegZ_reg
1k
UL > clkimy dout_reg [>dout
Figure 3-2

This circuit has paths from the rising clock to the falling clock, from the falling clock to the
falling clock, and from the falling clock to the rising clock.

So, how do we model this in PrimeTime? Well, duty cycle seems like an uncertainty, so your
first thought might be to use set_clock uncertainty. Unfortunately, this command doesn’t allow
you to set uncertainty between the rising and falling edges of the same clock. It has the —rise_to,
-fall_from options, but the man page says you can only use this for inter-clock uncertainty — that
is, uncertainty between two clocks.

<added 3/17/2005>

Formatte

The man page says:
-from from clock -to to clock

These two options specify the source and
destination clocks for interclock
uncertainty. You must specify either
the pair of -from/-rise from/-fall from
and -to/-rise to/-fall to, or
object list; you cannot specify both.

SNUG San Jose 2005 27 Working with PLLs in PrimeTime

-fall Indicates that uncertainty applies to
only the falling edge of the destination
clock. By default, the uncertainty
applies to both rising and falling
edges. This option is valid only for
interclock uncertainty, and is now
obsolete. Unless you need this option
for backward-compatibility, use -fall to
instead.

Sure enough, if you try to use edge switches with intraclock uncertainty, you get an error:

pt shell> set clock uncertainty -setup -rise 0.2 [get clocks clkin]
Error: Cannot specify '-rise or -fall' with "clock list'. (CMD-001)
0

But PT will accept this:

pt shell> set clock uncertainty -setup -rise from [get clocks clkin] -fall to [get clocks
clkin] 0.2
1

So, it appears that you can specify single-edge uncertainty intra-clock by using the inter-
clock syntax. The man page doesn’t say you can’t make both clocks in the inter-clock

syntax be the same.

It appears to work:

pt shell> report timing -from din reg -to dout reg

khkkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkkhkkhkkhkkhkkhkhkkkk

Report : timing
-path full
-delay max
-max paths 1
Design : simple
Version: W-2004.12-SP1

Date : Thu Mar 17 18:26:54 2005
khkkkhkkkhkkkhkhkkkhkkkhkkhkhkkhkhkkhkkkhkhkkkhkkkhkkkhkkkk

Warning: There are 3 invalid start points. (UITE-416)
Warning: There are 2 invalid end points for constrained paths. (UITE-416)

Startpoint: din reg (rising edge-triggered flip-flop clocked by clkin)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by clkin')
Path Group: clkin

Path Type: max

SNUG San Jose 2005 28 Working with PLLs in PrimeTime

Formatte

Formatte

I

Formatte

clock clkin (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
din reg/CP (dfnrbl) 0.00 0.00 r
din reg/Q (dfnrbl) <- 0.31 0.31 r
dout reg/D (dfnrbl) 0.00 0.31 r
data arrival time 0.31
clock clkin' (rise edge) 5.00 5.00
clock network delay (propagated) 0.02 5.02
inter-clock uncertainty -0.20 4.82
dout reg/CP (dfnrbl) 4.82 r
library setup time -0.09 4.73
data required time 4.73
data required time 4.73
data arrival time -0.31
slack (MET) 4.42

Still, there are disadvantages to this approach. Rolling the duty cycle into
uncertainty will make it difficult to separate duty cycle issues from other
uses of set clock uncertainty described later.

On the other hand, the uncertainty method may have some advantages in runtime
(fewer clocks) and possibly in SI analysis over the technique described below.

It is possible to model duty cycle using “set_clock latency —fall”, but it doesn’t work out-of-the-
box. You have to (ab)use some of the on-chip-variation features for something unrelated to on-
chip-variation, and isn’t too clean (it is explained in Appendix [10.3/4]).

Until a few years ago, there seemed to be no really clean way to model this except to run the
script twice — once for each of the extreme duty cycle waveforms (I call them min_high and
max_high). With the introduction of multiclock propagation capabilities in PT, we can now do
this in a single run.

Since we are going to use multiclock propagation, we first need to turn it on (it’s off by default):

set timing enable multiple clocks per reg true

SNUG San Jose 2005 29 Working with PLLs in PrimeTime

Formatte
Norwegiar

Formatte

Formatte

Formatte

Now we can create the two clocks. I have defined a single variable “ duty cycle min” to specify
what the minimum high period can be. I’ll set “ duty cycle max” to 1.0 minus this value (but
you could set it to some other value if you wanted to):

set period 10.0

set duty cycle min 0.40

set duty cycle max [expr 1.0 - $ duty cycle min]

create clock -period $ period -name clk minhigh \
-waveform [list 0 [expr $ period * $ duty cycle min]] \
[get_ports clk]

set _propagated clock clk minhigh

create clock -period $ period -name clk maxhigh \
-waveform [list 0 [expr $ period * $ duty cycle max]] \
-add \
[get_ports clk]

set propagated clock clk maxhigh

Notice the use of “-add” on the second create_clock. This is necessary to have both clocks exist
on the same pin.

Now, these clocks can never exist at the same time, so we don’t want them timing against one
another. We could do set_false path from each to the other, but instead let’s use the new
set_clock groups command. The two clocks can never coexist, so I’1l use the —exclusive option:

set_clock_groups -exclusive \
-group {clk minhigh} \
-group {clk maxhigh}

Now let’s look at the timing reports. We’ll time the path from the din_reg to the dnegl_reg first:

pt shell> report timing -input pins -path type full clock -from din reg -to
dnegl reg
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full clock
-delay max
-input pins
-max paths 1
Design : duty cycle piclk
Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

SNUG San Jose 2005 30 Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by clk maxhigh)
Endpoint: dnegl reg (rising edge-triggered flip-flop clocked by

clk maxhigh')
Path Group: clk maxhigh
Path Type: max

clock clk maxhigh (rise edge)
clock source latency

clk (in)

din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-

dnegl reg/D (dfnrbl)

data arrival time

clock clk maxhigh' (rise edge)
clock source latency

clk (in)

clkinv/I (inv0d2)

clkinv/ZN (inv0d2)

dnegl reg/CP (dfnrbl)

library setup time

data required time

data required time
data arrival time

slack (MET)

Startpoint: din reg (rising edge-triggered
Endpoint: dnegl reg (rising edge-triggered

clk minhigh')
Path Group: clk minhigh
Path Type: max

Incr Path

0.00 0.00

0.00 0.00
0.00 0.00 r
0.00 0.00 r
0.31 ~* 0.31 r
0.00 0.31 r

0.31

6.00 6.00

0.00 6.00
0.00 6.00 £
0.00 6.00 £
1.00 * 7.00 r
0.00 7.00 r

0.09 6.91

6.91

6.91

-0.31

6.60

flip-flop clocked by clk minhigh)
flip-flop clocked by

clock clk minhigh (rise edge)
clock source latency

clk (in)

din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-

dnegl reg/D (dfnrbl)

data arrival time

clock clk minhigh' (rise edge)
clock source latency

clk (in)

clkinv/I (inv0d2)

clkinv/ZN (inv0d2)

dnegl reg/CP (dfnrbl)

library setup time

data required time

data required time
data arrival time

slack (MET)

SNUG San Jose 2005

31

Incr Path

0.00 0.00

0.00 0.00
0.00 0.00 r
0.00 0.00 r
0.31 * 0.31 r
0.00 0.31 r

0.31

4.00 4.00

0.00 4.00
0.00 4.00 £
0.00 4.00 £
1.00 * 5.00 r
0.00 5.00 r

0.09 4.91

4.91

4.91

-0.31

4.60

Working with PLLs in PrimeTime

We get two timing reports — one for clk_minhigh and one for clk_maxhigh. Since we are
launching data from a rising edge (both clocks have the same rising edge waveform) and
capturing with the falling edge, the worst case for setup is the shorter duty cycle clock —
clk_minhigh. As you can see, clk_minhigh does indeed have less slack. lIts fall edge (that weird
“clock clk_minhigh’ (rise edge)” is PT-speak for falling edge) is at time 4.0 — 40% of the 10ns
period.

Next we’ll look at the falling-edge to falling-edge path.

pt_shell> report timing -input pins -path type full clock -from dnegl reg -to
dneg2 reg
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing
-path full clock
-delay max
-input pins
-max paths 1
Design : duty cycle piclk
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Startpoint: dnegl reg (rising edge-triggered flip-flop clocked by
clk maxhigh')

Endpoint: dneg2 reg (rising edge-triggered flip-flop clocked by
clk maxhigh')

Path Group: clk maxhigh

Path Type: max

Point Incr Path
clock clk maxhigh' (rise edge) 6.00 6.00
clock source latency 0.00 6.00
clk (in) 0.00 6.00 £
clkinv/I (inv0d2) 0.00 6.00 £
clkinv/ZN (inv0d2) 1.00 * 7.00 r
dnegl reg/CP (dfnrbl) 0.00 7.00 r
dnegl reg/Q (dfnrbl) <- 0.32 * 7.32 r
dneg2 reg/D (dfnrbl) 0.00 7.32 ¢
data arrival time 7.32
clock clk maxhigh' (rise edge) 16.00 16.00
clock source latency 0.00 16.00
clk (in) 0.00 16.00 £
clkinv/I (inv0d2) 0.00 16.00 £
clkinv/ZN (inv0d2) 1.00 * 17.00 r
dneg2 reg/CP (dfnrbl) 0.00 17.00 r
library setup time -0.09 16.91
data required time 16.91
data required time 16.91
data arrival time -7.32
slack (MET) 9.59

SNUG San Jose 2005 32 Working with PLLs in PrimeTime

Startpoint: dnegl reg (rising edge-triggered flip-flop clocked by

clk minhigh')

Endpoint: dneg2 reg (rising edge-triggered flip-flop clocked by

clk minhigh')
Path Group: clk minhigh
Path Type: max

clock clk minhigh' (rise edge)
clock source latency

clk (in)

clkinv/I (inv0d2)

clkinv/ZN (inv0d2)

dnegl reg/CP (dfnrbl)

dnegl reg/Q (dfnrbl) <-

dneg2 reg/D (dfnrbl)

data arrival time

clock clk minhigh' (rise edge)
clock source latency

clk (in)

clkinv/I (inv0d2)

clkinv/ZN (inv0d2)

dneg2 reg/CP (dfnrbl)

library setup time

data required time

.00
.00
.00
.00
.00
.00
.09

o
o
B B B B HH

o
o
B B Hh

data required time
data arrival time

slack (MET)

Again, there are two traces, one for each clock. Although the launch and capture times are

different, as you would expect, the slack values are the same.

Now let’s look at the dneg2 reg to dout reg path:

pt _shell> report timing -input pins -path type full clock -from dneg2 reg -to

dout reg
R R b I b b b b b Sh b 2 eh S b 2h Sh b S eh b b 2h Sb b 2 Sh b b Sh Sh b 2b eh Ib b 2b Ib o 4
Report : timing
-path full clock
-delay max
-input pins
-max paths 1
Design : duty cycle piclk
Version: V-2004.06

LRI R e S b I b b I Sb b I b b I Sb b S S S S I S b Sb b S b I Sb b I S b

SNUG San Jose 2005 33

Working with PLLs in PrimeTime

Startpoint: dneg2 reg (rising edge-triggered flip-flop clocked by

clk maxhigh')

Endpoint: dout reg (rising edge-triggered flip-flop clocked by clk maxhigh)

Path Group: clE_maxhigh
Path Type: max

clock clk maxhigh' (rise edge)
clock source latency

clk (in)

clkinv/I (inv0d2)

clkinv/ZN (inv0d2)

dneg2 reg/CP (dfnrbl)

dneg2 reg/Q (dfnrbl) <-

dout reg/D (dfnrbl)

data arrival time

clock clk maxhigh (rise edge)
clock source latency

clk (in)

dout reg/CP (dfnrbl)

library setup time

data required time

.00
.00
.00
.00
.10

o
o
B B B B HH

data required time
data arrival time

slack (MET)

Since this is from the falling edge to the rising edge, the worst case path will be from the later
falling edge, which is clk_maxhigh. There is another trace for clk_minhigh with 2 more ns of

slack.

So, we can model duty cycle variation in a single pass using two “exclusive” clocks and

multiclock propagation.

3.3 Applying this to our multiplier pll circuit

We can use this on our multiplier pll circuit in 2 places — the primary input clock clkin and the pll

clock pllout.

SNUG San Jose 2005

34

Working with PLLs in PrimeTime

We’ll use the same circuit as before, except that [have added a pair of flops on the pllout clock,
one rising edge and the other falling edge, to illustrate the duty cycle effect on pllout clock.

§2i_reg o
dixEnvoregt—dgutvpat L o> dautldx

CLW'I’EE_ZXTT,_

din|__>=
dfnpac |
din_reg =
dEvEdsr_r b8 rifbree—fBoP olhtrestt | dout_rect gy ppaat o> daut
clkin clh brpad ot
res_
L ’rntr'ee_t‘rrv—,_
|7 clhtreels Thdzlay—‘

Duty Cycle 50% +/- 10%

Duty Cycle 50% +/- 10%

Figure 3-3
First we’ll create the primary input clocks, one for each duty cycle case. We’ll use a loop.

set period 10.0
set duty cycle(min) 0.40
set duty cycle(max) [expr 1.0 - $ duty cycle(min)]
foreach dc {min max} {
create_clock -period $ period -name clkin ${ dc}high \
-waveform [list 0 [expr $ period * $ duty cycle($ dc)]]l \
-add \
[get_ports clkin]
set_propagated clock clkin ${ dc}high
}
set_clock_groups -exclusive \
-group {clkin minhigh} \
—-group {clkin:maxhigh}

Notice the “-add” switch again. Since the create clock is done in a loop, the —add will occur on
both create_clock commands, including the first one. This is harmless.

SNUG San Jose 2005 35 Working with PLLs in PrimeTime

Creating the pll output clocks is similar:

set period [expr 10.0 / 2]
set duty cycle(min) 0.40
set duty cycle(max) [expr 1.0 - $_duty_cycle(min)]
foreach dc {min max} {
create _clock -period $ period -name pllout ${ dc}high \
-waveform [list 0 [expr $ period * $ duty cycle($ dc)]] \
-add \
[get_pins PLL/OUT]
set_propagated clock pllout S${ dclhigh
}
set_clock_groups -exclusive \
-group {pllout minhigh} \
-group {pllout:maxhigh}

Now we need to create the generated divider clock. But now there are two clocks feeding the
divider_reg/CP pin. Which do we choose, and how do we tell PT about our choice?

Well, in this case, the choice is arbitrary. Since divider_reg only runs on rising edges, it doesn’t
matter which pllout_ clock we choose. If divider_reg ran on falling edges, however, we would
have to create two generated clocks — one for pllout_minhigh and one for pllout_maxhigh. We
would then add these to their respective clock groups in set_clock _group. In fact, we could still
do this even though divider_reg runs on rising edges — the propagated clocks would be identical,
but this is harmless. Some would argue that this is more consistent. It’s is a personal choice.

To keep things simple, we’ll just create one generated clock. We’ll use pllout maxhigh.

When multiple clocks feed into a point where we want to create a generated clock, it is necessary
to tell PT which clock is the source. This is done using the “-master” switch. To use the “-
master” switch, you must also use the “-add” switch, even though we’re only creating one clock.

create generated clock \
-source [get pins PLL/OUT] \
-name divclk \
-divide by 2 \
-add \
-master pllout maxhigh \
[get pins divider reg/Q]
set_propagated clock divclk

SNUG San Jose 2005 36 Working with PLLs in PrimeTime

The code to fetch the Tref and Tfb values is unchanged:

set path [get timing paths -delay max rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set ref delay [get_ attribute $ path arrival]

set path [get_ timing paths -delay max rise \
-from [get pins divider reg/Q] \
-to [get _pins PLL/FB] \
]

set fb delay [get_ attribute $ path arrival]

Now to set the source latency. There are two pll output clocks now, and they need the same
latency value. So, we do it in a loop again:

foreach dc {minhigh maxhigh} {
set_clock latency -source \
[expr $ ref delay - $ fb delay] \
[get_clocks pllout ${ dc}]

Now we’ll set the i/o timing. Since we now have two versions of clkin, we’ll have to create an
input/output constraint for each. Also, | want to illustrate the duty cycle effects here. In this
case, the duty cycle is on the external clock clkin, so I’ll do the i/o constraints relative to the
falling edge.

foreach dc {minhigh maxhigh} {

set_input delay -max 4.0 -clock clkin_${7dc} -clock fall -add [get_ports
din]

set_input delay -min 0.5 -clock clkin_${7dc} -clock fall -add [get_ports
din]

set _output _delay -max 1.0 -clock clkin_${7dc} -clock fall -add [get_ports
dout]

set output_delay -min [expr -1.0 * 0.5] -clock clkin_${7dc} -clock fall -add
[get_ports dout]
}

Now look at the timing from din:

pt _shell> report timing -input pins -path type full clock expanded -from din
R R I I b b b b b I 2 Sh b b 2h Sh b b b b 2h b I 2 Sh b b dh ab b 2h dh b b 2h b o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : idcm pll dc
Version: V-2004.06

LR IR R e S b I S b I Sb b I S b I Sb b S b S S S I S b Sb b S b S b I S b

SNUG San Jose 2005 37 Working with PLLs in PrimeTime

Startpoint: din
Endpoint: dout reg
Path Group: divclk
Path Type: max

(input port clocked by clkin maxhigh)
(rising edge-triggered flip-flop clocked by divclk)

clock clkin maxhigh (fall edge)

clock network delay (propagated)

input external delay

din (in)
dinpad/I (bufbdl)
dinpad/Z (bufbdl)

dout reg/D (dfnrbl)
data arrival time

clock divclk (rise edge)
clock pllout maxhigh

PLL/OUT (DUMMYPLL)
clktree 2x/I (bufbdl)
clktree 2x/7Z (bufbdl)
divider reg/CP (dfnrbl)
divider reg/Q (dfnrbl)

clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
dout reg/CP (dfnrbl)
library setup time
data required time

(source latency)

(gclock source)

.00

.12
.00
.00
.50
.00

.32
.00
.20
.00
.30
.00
.08

o
o
[T T o S B

E B KRB

EBRBRHB

data required time
data arrival time

slack (VIOLATED)

| have nworst defaulted to 1, so the report only shows the worst case — data launched by
clkin_maxhigh (latest possible falling edge of clkin) and captured by divclk. If I set nworst to 4,

I’d see the clkin_minhigh paths as well.

Now let’s look at the pllout path:

pt _shell> report timing -input pins -path type full clock expanded -from

d2x_reg -to d2xinv_reg

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

timing

-path full clock expanded
-delay max

-input pins

-max paths 1

Design idem pll dc

Version: V-2004.06

Report

LR IR R e S b I S b I Sb b I S b I Sb b S S S S S db I Sh b Sb b I Sb b I S b

Startpoint: d2x reg
pllout maxhigh)

SNUG San Jose 2005

38

(rising edge-triggered flip-flop clocked by

Working with PLLs in PrimeTime

Endpoint: d2xinv_reg (rising edge-triggered flip-flop clocked by

pllout maxhigh')
Path Group: pllout maxhigh
Path Type: max

clock pllout maxhigh (rise edge)
clock source latency

PLL/OUT (DUMMYPLL)

clktree 2x/I (bufbdl)

clktree 2x/7Z (bufbdl)

d2x_reg/CP (dfnrbl)

d2x_reg/Q (dfnrbl) <-
d2xinv_reg/D (dfnrbl)

data arrival time

clock pllout maxhigh' (rise edge)
clock source latency

PLL/OUT (DUMMYPLL)

clktree 2x/I (bufbdl)

clktree 2x/7Z (bufbdl)

clktree 2xinv/I (inv0d2)

clktree 2xinv/ZN (inv0d2)
d2xinv_reg/CP (dfnrbl)

library setup time

data required time

OO OO OO W

OO O R OONO

.00
.12
.00
.00
.50
.00
.04
.00
.08

BB RBRHB

w
oo
B B Fh Fh Hh Hh

data required time
data arrival time

slack (MET)

Startpoint: d2x reg (rising edge-triggered flip-flop clocked by

pllout minhigh)

Endpoint: d2xinv_reg (rising edge-triggered flip-flop clocked by

pllout minhigh'")
Path Group: pllout minhigh
Path Type: max

clock pllout minhigh (rise edge)
clock source latency

PLL/OUT (DUMMYPLL)

clktree 2x/I (bufbdl)

clktree 2x/7Z (bufbdl)

d2x_reg/CP (dfnrbl)

d2x_reg/Q (dfnrbl) <-
d2xinv_reg/D (dfnrbl)

data arrival time

clock pllout minhigh' (rise edge)
clock source latency

PLL/OUT (DUMMYPLL)

clktree 2x/I (bufbdl)

clktree 2x/7 (bufbdl)

clktree 2xinv/I (inv0d2)

clktree 2xinv/ZN (inv0d2)
d2xinv_reg/CP (dfnrbl)

SNUG San Jose 2005

39

O OO OO KN

OO O OOoONMO

.00
.12
.00
.00
.50
.00
.04
.00

BB RBRHB

()
N
B B FhHh Hh Hh

Working with PLLs in PrimeTime

library setup time -0.08 -0.67

data required time -0.67
data required time -0.67
data arrival time 2.28
slack (MET) 1.61

It reports paths on both pll clocks (no need to change nworst here — there are two capture clocks
instead of two launch clocks) — the worst being the capture with pllout_minhigh because it is the
nearest falling edge after launching data on the rising edge.

3.4 When to use these techniques
It is important to point out that you only need to create these pairs of clocks to represent duty

cycle specs when you have opposite-edge clocking. If you’re sure nothing happens on falling
edges, you don’t need to do all this.

SNUG San Jose 2005 40 Working with PLLs in PrimeTime

4 Jitter

4.1 Jitter, skew, and uncertainty

I don’t know if there are any “official” definitions of jitter and skew. I tend to think of jitter as a
high-frequency, cycle-to-cycle phenomenon. | tend to think of skew as something static or at
least very slow-changing. But there is one type of “skew” that I want to discuss up front — clock
tree skew.

Clock tree skew is the difference in delays from the clock source to the various flop clock pins on
the clock network. Because clock tree skew is often modeled in synthesis as clock uncertainty, it
has come to be associated in many people’s minds with all the other things that are modeled
using clock uncertainty. However, for post-route analysis (which is what is being addressed in
this paper), clock tree skew doesn’t exist as a separate entity and does not need to be modeled. It
is already there in the delay numbers or parasitics. For post-route analysis, any skew in the clock
tree will automatically be handled by PT — it knows the exact delay to each element on the clock
tree and will do slack calculations using these numbers. There is no need to budget for clock tree
skew.

There is also a phenomenon that I would call “clock tree jitter”. Since switching thresholds and
delay can vary slightly according to switching activity in other gates, there may indeed be more
cycle-to-cycle jitter at the end of the clock tree than there was at the beginning. | have seen this
in an actual chip — a heavily loaded divide-by 2 clock was “modulating” the faster clock. Every
time the slow clock switched from low to high, a lot of current was drawn, and the faster clock’s
edge rate would slow down, thus delaying the faster clock. This caused a fairly pronounced
cycle-to-cycle jitter at the end of the fast clock tree. This is admittedly a somewhat extreme case,
but we may someday have to account for “clock tree jitter” in our analysis.

4.2 My definition of jitter

There doesn’t seem to be a common interpretation of what a jitter specification means. I'm
going to define jitter somewhat loosely as follows:

“Jitter is the maximum/minimum variation in the length of a single clock cycle”.

This means that a 10ns clock with jitter of +/-100ps can have a minimum cycle length of 9.9ns
and a maximum cycle length of 10.1ns.

This is not the only possible definition of jitter. You can also define jitter as “the uncertainty in
the location of a clock edge relative to its nominal location”. By this definition, our 10ns clock
with +/-100ps jitter can actually have a minimum period of 9.8 and a maximum period of 10.2
(jitter edge late followed by jitter edge early and jitter edge early followed by jitter edge late). Or
you could define our original clock (period 9.9 to 10.1) as having edge jitter of +/-50ps.

SNUG San Jose 2005 41 Working with PLLs in PrimeTime

These two different definitions stem from two different sources of jitter. The “cycle” definition
represents “frequency” jitter — like a PLL adjusting its cycle to track a source. The “edge”
definition represents “noise” jitter — switching thresholds and the like that cause uncertainty
against a steady frequency.

Both types of jitter may be real. In most cases, you can convert “noise” jitter to an equivalent 2x
value and add it to the “frequency” jitter to get cycle jitter (which is what I’m using here).
Whenever you divide the clock in some way, this isn’t so clean. More on this later (see the
section on jitter and generated clocks later in this chapter).

4.3 Sources of jitter
There are several sources of jitter related to the pll:. They are:

1. PLL cycle-to-cycle jitter. This is the change in period of the PLL on a cycle-to-cycle
basis.

2. Refclk cycle-to-cycle jitter. This is the change in period of the Refclk on a cycle-to-cycle
basis.

3. PLL phase error. The job of the pll is to make the Fb pin match the Ref pin in phase and
frequency. But the pll is not perfect. Depending on process, temperature, etc there may
be some small difference between the arrival time at the Ref pin and at the Fb pin. PlII
phase error is the measure of this difference.

PII phase error isn’t technically a form a jitter, but | have included it because it is modeled in the
same way.

4.4 Effects of jitter on different sorts of paths

When modeling jitter effects in PT, it is important to consider the effect of different types of jitter
on different paths.

First, consider the simple case of two flops on a single clock:

din[_>

din_reg

clikin[dout_reg [dout

Figure 4-1

SNUG San Jose 2005 42 Working with PLLs in PrimeTime

Once we select an arbitrary time zero for the first edge, here are two possibilities for the second
clock edge — early and late.

ClIkin jitters late

Worst setup———

CIkin jitters early

Figure 4-2

It’s easy to see that the worst-case setup is affected by the jitter. If the clock jitters by +/- 100ps,
that means that the capture clock could be 100ps earlier or 100ps later. Later won’t matter (for
setup), but earlier will reduce the available clock period and therefore reduce the path slack.

PlI cycle-to-cycle jitter will not, however, affect hold paths within the PLL’s clock tree. This is
because hold is a “single-edge” or “same-edge” phenomenon. The question is whether a source
flop will change its data too soon to avoid being captured by the capture flop on the same edge.
If the next edge jitters, it won’t affect hold.

However, hold paths between the pll clock and another clock (like the refclk) will be affected by
the PLL’s cycle-to-cycle jitter.

Here’s an example circuit and waveforms to illustrate this:

dInD

din_req

clkEn[> dout_reg [dout
pllnutl::?

Figure 4-3

SNUG San Jose 2005 43 Working with PLLs in PrimeTime

clkin early/late

clkin late/early

Worst hold

L

pllout early/late

pllout late/early

Figure 4-4

\

\w:up

Although the path uses clocks that are nominally the “same edge” they are really not the same
edge. They are really edges of two different clocks that are supposed to occur at the same time.
But the “at the same time” is affected by jitter. A flop clocked by the pll could in fact launch its
data earlier due to the PLL’s cycle-to-cycle jitter without there being any matching movement of
the capture clock (refclk). It’s easy to see from the above waveform that both setup and hold
margins will be reduced by the sum of the jitters of both clocks.

Now consider pll phase error. Unlike jitter, pll phase error doesn’t affect edge-to-edge timing at
all. It is simply a time shift relative to some arbitrary external standard. Thus, it has absolutely
no effect on internal paths within the PLL’s clock tree. If the pll clock is shifted from the refclk
by 100ps or 100seconds, it won’t matter to flops along the PLL’s clock tree for either setup or

hold.

But pll phase error will certainly affect paths between the pll clock and the ref clock, just as if it

were pll cycle-to-cycle jitter:

SNUG San Jose 2005

44

Working with PLLs in PrimeTime

clkin early/late

clkin late/early

pllout early/late

pllout late/early

Phase offset late

pllout early/late

—\ Worst hold

i

pllout late/early

Wor§\§e<tup

Phase offset earlv —>| |<—

Setup margin reduced by : clkin_c2cjitter(+) + phase_offset(-) + pll_c2cjitter(-)
Hold margin reduced by : clkin_c2cjitter(-) + phase_offset(+) + pll_c2cjitter(+)

Figure 4-5

Here is a table summarizing which type of jitter affects which paths:

Type of Same-clock | Same-clock | Refclk Refclk

jitter setup hold to/from to/from
pliclk setup | pliclk hold

Pll cycle-to- | Yes No Yes Yes

cycle

Refclk Yes No Yes Yes

cycle-to

cycle

Pll phase No No Yes Yes

error

Figure 4-6

SNUG San Jose 2005

45

Working with PLLs in PrimeTime

Note that | have used a very simplified definition of jitter in these examples. It might be worse
than this. If you allow the refclock to have its maximum jitter for N cycles, and the pll clock to
have its maximum jitter for M consecutive cycles, then you get setup/hold reductions of:
N*refclk max_jitter + M*pllclk max_jitter (where “max_jitter” means the max excursion from
nominal — 100ps for a jitter of +/- 100ps). Ultimately this will have to be limited by the “long-
term jitter” spec. If we define “long term jitter” as “the absolute maximum difference between
the edges of the refclk and the pll clock under any and all circumstances”, then perhaps we
should replace the “refclk c2c_jitter + pllclk c2c jitter + phase error” with a single term — the
long-term jitter. Or, since the long-term jitter spec was probably derived using a jitter-free
reference clock, perhaps the correct answer is “refclk c2c jitter + pll long term_jitter”.

Of course, we re not free to define any of these terms. What matters is how the PLL designer
defines them. Since there is, as far as | can tell, no clear industry-accepted definition of jitter
specs, it is important to know what the person who created the spec meant.

The important point to remember is that the uncertainty between the ref clock and the pll clock is
different from the uncertainty of the pll clock itself, and of the ref clock itself. You’ll have to
work with the PLL designer to make sure you get the correct inter-clock value.

4.5 Modeling jitter with set_clock uncertainty

The PT command “set_clock uncertainty” is really like two commands rolled into one. It can
really be used only in one of two modes — setting uncertainty within a clock and setting
uncertainty between clocks. Many of the options, in particular the edge-related options, only
apply in inter-clock mode. Different values can be assigned for setup and hold uncertainty.

Looking at the tables above, it is pretty easy to figure out what values to use for the various
uncertainties. For intra-clock (same clock) uncertainties, setup will use the cycle-to-cycle jitter

spec for that clock (the “+/-* value, or half of the total range). Hold uncertainty will use zero.

For inter-clock uncertainties between the refclk and the pll clock, setup will use the sum of all
three jitter sources, as will hold.

4.6 Applying jitter specs to the example circuit — simple case
First we’ll apply this to the simple case — no divider in the feedback path and no duty cycle

checks. This circuit is just like the one in section 2.2, except that | have added another flop in the
data path to show internal path timing checks.

SNUG San Jose 2005 46 Working with PLLs in PrimeTime

dln[::} dinpac

din_reg

dout_reg
clktn[>—tikinpad
pLL | clktres_roo¥ clktreec
|7 clktrees deelay'—‘

duutpad'_D dout

Figure 4-7
Here are the jitters specs we’re going to use:

Jitter specs

set pll c2cjitter 0.200 ;% +/-0.200
set phase error 0.150 ;# +/- 0.150
set refclk c2cjitter 0.120 ;# +/- 0.120

After doing all the clock creation and setting the correct source latency as before, we can set the
jitter. First we’ll do the intra-clock uncertainty. Although the hold value would default to 0
anyway, | will set it here to make it clear that O is what | want:

refclk internal
set_clock_uncertainty \
-setup $ refclk c2cjitter \
[get_clocks clkin]
set_clock_uncertainty \
-hold 0 \
[get_clocks clkin]

pllout internal
set_clock _uncertainty \
-setup $ pll c2cjitter \
[get_clocks pllout]
set_clock uncertainty \
-hold 0 \
[get_clocks pllout]

SNUG San Jose 2005 47 Working with PLLs in PrimeTime

Now, we’ll set the uncertainty between the two clocks:

refclk to pllout

set_clock_uncertainty \
-setup [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from [get_clocks clkin] \
-to [get_clocks pllout]

set_clock_uncertainty \
-hold [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from [get_clocks clkin] \
-to [get_clocks pllout]

pllout to refclk

set_clock_uncertainty \
-setup [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from [get_clocks pllout] \
-to [get_clocks clkin]

set_clock_uncertainty \
-hold [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from [get_clocks pllout] \
-to [get_clocks clkin]

Set the same i/o constraints as before:

set_input delay -max 8.0 -clock clkin [get_ports din]

set_input _delay -min 0.5 -clock clkin [get_ports din]
set_output_delay -max 2.0 -clock clkin [get ports dout]
set_output_delay -min [expr -1.0 * 0.5] -clock clkin [get_ports dout]

Now, let’s run some reports.

pt _shell> report timing -input pins -path type full clock expanded -from din
R R b I b b b b b Sh b 2 Sh S b 2h Sh b S eh b b 2h b b 2 Sh b b Sh ah b b dh Ib b 2h Ib o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : jitter simple
Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

SNUG San Jose 2005 48 Working with PLLs in PrimeTime

Startpoint: din (input port clocked by clkin)
Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock clkin (rise edge)

clock network delay (propagated)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
din reg/CP (dfnrbl)
inter-clock uncertainty
library setup time

data required time

[y

O WWOWOOWVWWIJJO

O W WO oo o
P

o
o
[T T o T B

EBRBRHB

data required time
data arrival time

slack (MET)

Notice that this report is just the same as the report in section 2.2, except the slack is reduced by
the inter-clock latency between clkin and the pll output clock. This latency value is 0.2 (the pll
cycle-to-cycle jitter) plus 0.15 (the potential phase error between clkin and pllout) plus 0.120

(clkin’s own cycle-to-cycle jitter).

The hold path also shows this slack reduction due to the inter-clock latency between the clocks:

pt shell> report timing -input pins -path type full clock expanded -from din -

delay min
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : jitter simple
Version: V-2004.06-SP1

LRI R e S b I S b I Sb IE I S b I Sb b S b S S S S Jb I Sb db S b I Sb b 3 Sb b

SNUG San Jose 2005 49

Working with PLLs in PrimeTime

Startpoint: din (input port clocked by clkin)
Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock clkin (rise edge)

clock network delay (propagated)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
din reg/CP (dfnrbl)
inter-clock uncertainty
library hold time

data required time

QOO OONODONO

.00
.30
.00
.00
.20
.00
.30
.00
.47
.01

@)
(@]
Hh Hh Hh Fh Hh

EBRBRHB

data required time
data arrival time

slack (MET)

The dout path is also the same as in section 2.2, except for the inter-clock latency.

pt shell> report timing -input pins -path type full clock expanded -to dout

R R R e N R TS
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : jitter simple
Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

SNUG San Jose 2005 50

Working with PLLs in PrimeTime

Startpoint: dout reg

(rising edge-triggered flip-flop clocked by pllout)

N
(@]
FfhHhHh B BB B BB

Endpoint: dout (output port clocked by clkin)
Path Group: clkin

Path Type: max

Point Incr
clock pllout (rise edge) 0.00
clock source latency -2.30
PLL/OUT (DUMMYPLL) 0.00
clktree root/I (bufbdl) 0.00
clktree root/Z (bufbdl) 2.20
clktree 1/I (bufbdl) 0.00
clktree 1/7 (bufbdl) 0.30
dout reg/CP (dfnrbl) 0.00
dout reg/Q (dfnrbl) 0.33
doutpad/I (bufbdl) 0.00
doutpad/z (bufbdl) 2.50
dout (out) 0.00
data arrival time

clock clkin (rise edge) 10.00
clock network delay (propagated) 0.00
inter-clock uncertainty
output external delay -2.00

data required time

data required time
data arrival time

Here’s the path between the data flops:

pt shell> report timing -input pins -path type

din reg -to dout reg
EE I I I S S S S S b S S S S S S S S S S S S S S S S S S b SE S S S b S b S S 4

Report timing

-path full clock expanded
-delay max

-input pins

-max paths 1

Design jitter simple

Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

SNUG San Jose 2005 51

full clock expanded -from

Working with PLLs in PrimeTime

Startpoint: din reg
Endpoint: dout reg

Path Group: pllout

Path Type: max

(rising edge-triggered flip-flop clocked by pllout)
(rising edge-triggered flip-flop clocked by pllout)

clock pllout (rise edge)
clock source latency

PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)

clktree 1/I (bufbdl)
clktree_l/Z (bufbdl)
din reg/CP (dfnrbl)
din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency

PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)

clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
dout reg/CP (dfnrbl)
clock uncertainty
library setup time
data required time

[T o T B T B A

EBRBRHB

data required time
data arrival time

slack (MET)

Notice the clock uncertainty of 0.20. This is the PLL’s cycle-to-cycle jitter. The same path on

hold has no uncertainty:

pt _shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg -delay min
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4

Report timing

-path full clock expanded
-delay min

-input pins

-max paths 1

Design jitter simple

Version: V-2004.06

LR IR R e S b I S b I Sb b I S b I Sb b S S S S I S db I Sh b S b I Sb b I S b

SNUG San Jose 2005 52

Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock pllout (rise edge)

clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/7 (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)

clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
dout reg/CP (dfnrbl)
library hold time

data required time

OO OO NODONO

O OO OO NMNODONO

.00
.30
.00
.00
.20
.00
.30
.00
.01

N
(@]
B B BB RBR

EBRBRHB

data required time
data arrival time

As discussed earlier, the hold path within a clock network is not affected by jitter.

4.7 Generated clocks

What about generated clocks? For example, if the circuit contains a divide-by clock derived
from the pll output clock, which types of jitter affect which paths on this clock?

Just as with the refclk/pliclk interface, we are faced with the question of what cycle-to-cycle jitter

means on subsequent cycles.

Remember that my (cycle) defintion of jitter was:

“Jitter is the maximum/minimum variation in the length of a single clock cycle”.

SNUG San Jose 2005

53

Working with PLLs in PrimeTime

If you assume that subsequent cycles can also vary by this same amount, at least over the number
of periods concerned, a divide-by N clock can end up with N times the original source clock
jitter. Let’s take the min example (10ns period, +/-100ps jitter):

1x clock Div2 clock | Div4 clock

0 0) 0 Jitter is 2x master clock (200ps)

9.9

19.8 (198) <

29.7

39.6 39.6 (39.6) <«

49.5 | Jitter is 4x master clock (400ps)
59.4 59.4 /

69.3 .

79.2 79.2 792) 4

If, however, you were to take an edge-centric view of jitter, the uncertainty of any divided clocks
would be the same as the uncertainty of the master clock.

Again, we get back to what the terms mean, and, again, you’ll have to work this out with the PLL
designer. Now let’s look at the various inter- and intra-clock paths related to the generated clock.

We’ll start with paths between the master clock (pll out clock in this case) and the generated
clock. Assuming the path is single-cycle, pll cycle-to-cycle jitter will have no effect on hold for
the same reason it has no effect on hold within the pll clock network — it’s the same edge. Now
consider the setup case (again, assuming a single-cycle path). If the generated clock is the
capture clock, then the data will have been launched one master clock earlier. This launch time
could be late by pll_c2c_jitter, reducing the setup margin by that amount. You cannot
simultaneously pull the capture (generated) clock in because it is directly created by the master
clock. Similarly, if the generated clock is the launch clock, then the next master clock is the
capture clock, and it could be early by pll_c2c_jitter. So, the setup uncertainty for paths between
the master and generated clocks is pll_c2c_jitter.

PII phase error won’t have any effect on these paths, nor will refclk cycle-to-cycle jitter.

Paths between the refclk and the pll generated clock will be affected in the same way as paths
between the refclk and the pll output clock itself (affected by everything).

SNUG San Jose 2005 54 Working with PLLs in PrimeTime

So, we can continue our table like this:

Type of Genclk Genclk Pliclk Pliclk Refclk Refclk
jitter internal internal to/from to/from to/from to/from
setup hold pllgenclk pllgenclk pllgenclk pllgenclk

setup hold setup hold

Pll cycle-to- | Yes (may be | No Yes No Yes Yes

cycle multiplied)

Refclk No No No No Yes Yes

cycle-to

cycle

Pl phase No No No No Yes Yes

error

Figure 4-8

4.8 What about falling edges?

What does a pll cycle-to-cycle jitter spec of “+/- 100ps” imply about the pll clock’s falling edge?
The PLL’s clock is typically generated from a voltage-controlled oscillator converted to digital.
If the cycle-to-cycle jitter reflects mostly this analog-to-digital conversion, then it would be fair
to say that the entire cycle-to-cycle jitter would apply to the falling edge, too. This is the edge
jitter definition. If however, the jitter is primarily due changes in the vco’s period as it attempts
to track the refclk frequency, then it would seem that the falling edge should have about half the
rated jitter. This is the cycle jitter definition.

If the answer is anything other than 100%, you cannot model it within a clock network with the
set_clock _uncertainty command in PT. PT will only allow edge-specific uncertainty between
clocks. Any intra-clock uncertainty will be applied in full force to both edges.

<added 3/17/2005>

Formatte

As mentioned in the earlier update sidebar, it appears this may be possible using inter-
clock syntax to describe an intra-clock uncertainty:

pt shell>set clock uncertainty -setup -rise from [get clocks clkin] -fall to [get clocks
clkin] 0.2
1

So, you can probably use this to model asymetrical jitter.

If you actually had this level of detail about the PLL’s behavior, and you needed to model the
falling edge uncertainty as a different value from the rising edge, you would probably have to do

SNUG San Jose 2005 55 Working with PLLs in PrimeTime

this by adjusting the duty cycle clocks discussed earlier. I’ve never had this level of detail to
work with.

Opposite-edge clocking between the refclk and the pll clock is something I haven’t run into. If
an interface is slow enough to use opposite-edge clocking, it probably doesn’t have an idc pll.

4.9 Applying jitter specs to the example circuit — complex case

Author’s note: If you're getting a little tired by this point, you might want to skip this section
and go back to it later. It gets a little hairy...

Ok, now let’s try something a little harder. We’ll go back to the 2x multiplier configuration, only
this time 1 will include some cross-clock paths. And we’ll handle the duty cycle as well.

dZx_reg

ciktree_dx

dZx_and_din
dixout_reg bt Zxpad [T dout2x

din_reg

divider—r2g—ryictrge—rdotoik tresst
clkin[C> ik fnpad
PLL

den[

dout_reg doutpad ™= dout

ok tree=E fhdelay
Figure 4-9

Note: I'm going to assume that the divclk uncertainty is 2 times the pll_c2c_jitter (see discussion
above).

After setting up the clocks (2 primary clocks at clkin, 2 primary clocks at PLL/OUT, and 1
generated clock at divider_reg/Q), and calculating and applying the pll source latency, we’re
ready to apply the uncertainties. We have a total of five clocks, but since the duty cycle clocks
are exclusive to one another, we can treat them as three groups. We’ll set up some collections to
make this easier:

set pll clks [get_clocks pllout*high]
set refclks [get clocks clkin*high]

SNUG San Jose 2005 56 Working with PLLs in PrimeTime

First, well set the uncertainty for refclk (clkin) internal paths:

set_clock_uncertainty \
-setup $ refclk c2cjitter \
$ refclks
set_clock_uncertainty \
-hold 0 \
$ refclks

Now we’ll do the paths from refclk to the pll clocks and divclk. They have the same value, so
we can do it in one pair of statements.

set_clock_uncertainty \
-setup [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from $ refclks \
-to [list $ pll clks [get_clocks divclk]]

set_clock_uncertainty \
-hold [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from $ refclks \
-to [list $ pll clks [get_clocks divclk]]

Now the pll output clk(s) internal paths:

set_clock_uncertainty \
-setup $ pll c2cjitter \
$ pll clks
set_clock_uncertainty \
-hold 0 \
$ pll clks

From pll output clock to divclk is special. It is similar to pll output clock’s internal paths:

set_clock _uncertainty \
-setup $ pll c2cjitter \
-from $ pll clks \
-to [get_clocks divclk]
set_clock uncertainty \
-hold 0 \
-from $ pll clks \
-to [get_clocks divclk]

Now pll output clocks to refclk:

set_clock _uncertainty \
-setup [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from $ pll clks \
-to $ refclks

set_clock_uncertainty \
-hold [expr $ refclk c2cjitter + $ phase error + $§ pll c2cjitter] \
-from $ pll clks \
-to $ refclks

And finally we can do divclk itself.

SNUG San Jose 2005 57 Working with PLLs in PrimeTime

First the internal paths. Here’s where we apply the 2x multiplier.

set_clock_uncertainty \
-setup [expr 2 * $ pll c2cjitter] \
[get_clocks divclk]
set_clock_uncertainty \
-hold 0 \
[get_clocks divclk]

Then the paths to pll output clock (again, similar to internal clocks):

set_clock_uncertainty \
-setup $ pll c2cjitter \
-from [get_clocks divclk] \
-to $ pll clks
set_clock_uncertainty \
-hold 0 \
-from [get_clocks divclk] \
-to $ pll clks

And finally from divclk to refclk:

set_clock_uncertainty \
-setup [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from [get_clocks divclk] \
-to $ refclks

set_clock_uncertainty \
-hold [expr $ refclk c2cjitter + $ phase error + $ pll c2cjitter] \
-from [get_clocks divclk] \
-to $ refclks

Ok, now we set the i/o constraints as before:

foreach dc {minhigh maxhigh} {

set_input delay -max 4.0 -clock clkin ${ dc} -add [get ports din]

set_input delay -min 0.5 -clock clkin ${ dc} -add [get ports din]

set output_delay -max 1.0 -clock clkin_${7dc} -add [get_ports dout]

set output_delay -min [expr -1.0 * 0.5] -clock clkin_${7dc} -add [get ports
dout]
}

Here’s the input report:

pt _shell> report timing -input pins -path type full clock expanded -from din
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : jitter example
Version: V-2004.06

LRI R e S b I S b I Sb IE I S b I Sb b S b S S S S Jb I Sb db S b I Sb b 3 Sb b

SNUG San Jose 2005 58 Working with PLLs in PrimeTime

Startpoint: din (input port clocked by clkin minhigh)
Endpoint: din reg (rising edge-triggered flip-flop clocked by divclk)

Path Group: divclk
Path Type: max

clock clkin minhigh (rise edge)
clock network delay (propagated)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock divclk (rise edge)
clock pllout maxhigh (source latency)

PLL/OUT (DUMMYPLL)
divider reg/CP (dfnrbl)
divider reg/Q (dfnrbl) (gclock source)

clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
din reg/CP (dfnrbl)
inter-clock uncertainty
library setup time

data required time

.00

.61
.00
.00

.31
.00
.20
.00
.30
.00
.47
.08

=
(@)
.

~ 3 3

=
© VWO O WW-I

O W WO oWowoo
P

o
o
[T B B

w
NeJ
]

EBRBRHB

data required time
data arrival time

slack (MET)

We expect the input and output path slacks to be the same as they were in the last section.
Although now being captured by divclk, the pll will drive divclk with the same timing as the
pllout clock was driven with in the previous example. The source latency and clock path delays

will be different, but the net result will be the same. And it is.

The dout path also matches the previous example.

How about those cross-clock path?. We’ll look at din_reg to d2xout_reg first.

pt _shell> report timing -input pins -path type full clock expanded -from

din reg -to d2xout reg -delay max
LR IR R e S b I b b I Sb dE I S b I Sb b S S S S I S Jb I Sh b S b I S b I S b
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : jitter example
Version: V-2004.06

LR IR R e S b I S b I Sh b I S b I Sb b S S S S S S b Sb db I Sb b I Sb 2b I S b 3

SNUG San Jose 2005 59

Working with PLLs in PrimeTime

Startpoint: din reg

Endpoint: d2xout reg
pllout maxhigh)

Path Group: pllout maxhigh

Path Type: max

(rising edge-triggered flip-flop clocked by divclk)
(rising edge-triggered flip-flop clocked by

clock divclk (rise edge)
clock pllout maxhigh

PLL/OUT (DUMMYPLL)
divider reg/CP (dfnrbl)
divider reg/Q (dfnrbl)

clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/7Z (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
d2x_and din/A2 (an02d2)
d2x_and din/Z (an02d2)
d2xout reg/D (dfnrbl)
data arrival time

clock pllout maxhigh
clock source latency

(rise edge)

PLL/OUT (DUMMYPLL)
clktree 2x/I (bufbdl)
clktree 2x/7Z (bufbdl)

d2xout reg/CP (dfnrbl)
inter-clock uncertainty
library setup time

data required time

(source latency)

(gclock source)

oNeoNoRloBoNoNel VoNe)

[e)}
=
I

EBRERBREBRERBRHR

BB KRB

data required time
data arrival time

slack (MET)

(duplicate trace for pllout minhigh deleted)

Data is launched by divclk at time zero. The earliest that it can be captured by pllout is 5.0.
Since the pllout clock has a cycle-to-cycle jitter of 0.200, the slack is reduced by this much via

the inter-clock uncertainty value.

SNUG San Jose 2005

60

Working with PLLs in PrimeTime

The same path for hold looks like this:

pt_shell> report timing -input pins -path type full clock expanded -from

din reg -to d2xout reg -delay min

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : jitter example
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: din reg (rising edge-triggered flip-flop clocked by divclk)
Endpoint: d2xout reg (rising edge-triggered flip-flop clocked by

pllout maxhigh)
Path Group: pllout maxhigh
Path Type: min

clock divclk (rise edge)

clock pllout maxhigh (source latency)

PLL/OUT (DUMMYPLL)
divider reg/CP (dfnrbl)

divider:reg/Q (dfnrbl) (gclock source)

clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
d2x_and din/A2 (an02d2)
d2x_and din/Z (an02d2)
d2xout reg/D (dfnrbl)
data arrival time

clock pllout maxhigh (rise edge)
clock source latency

PLL/OUT (DUMMYPLL)

clktree 2x/I (bufbdl)

clktree 2x/7Z (bufbdl)

d2xout reg/CP (dfnrbl)

library hold time

data required time

oNoNoRoloNoNel VoNe)

.00
.61
.00
.00
.50
.00
.01

(&)
=
I

N
(@]
FhthFhFh B B BB BB

BB KRB

data required time
data arrival time

slack (MET)

(duplicate trace for pllout minhigh deleted)

Notice again the lack of an uncertainty value. If the cycle-to-cycle jitter caused the pllout clock

edge to move, the divclk edge moved with it.

SNUG San Jose 2005

61

Working with PLLs in PrimeTime

The other cross-clock paths are similar.

SNUG San Jose 2005 62 Working with PLLs in PrimeTime

5 On-chip Variation

On-chip variation (OCV) refers to the fact that a physical device fabbed at a particular process
point (best-case, worst-case, or somewhere in-between) will have some amount of variation in
delays. Reference [5] has an excellent discussion of on-chip variation (OCV) and how it is
handled by PT (and by Einstimer, if you’re interested). I’m not going to go into all the details
here, but I will present a simple example as background, and then show how this impacts pll
timing.

5.1 The classic OCV case

Consider this simple circuit:

din[::>
din_reg
Clki”[::> Elktree_root clktree=l dout_reg [::}duut
N N
2.0/2.2 0:27/0:30 i1k tpeell
N
0.08/0.10

Figure 5-1

| have annotated the min and max delays onto the buffers (I left the CP->Q paths as constants to
simplify the example).

Without OCV, the timing will use the worst-case (red) numbers and looks like this:

pt _shell> report timing -input pins -path type full clock expanded -from
din reg -to dout reg

Information: Using automatic max wire load selection group 'predcaps'. (ENV-
003)
Information: Using automatic min wire load selection group 'predcaps'. (ENV-
003)

LR IR R e S b I S b I Sb b I b b I Sb b S S S S S I S Sb I Sh b S b I S b I Sb b
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_basic
Version: V-2004.06

LRI R e S b I S b I Sh b I S b I Sb b S S S S S b Sb db S b I Sb db 3 S b 3

SNUG San Jose 2005 63 Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by clkin)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by clkin)
Path Group: clkin

Path Type: max

Point Incr Path
clock clkin (rise edge) 0.00 0.00
clock source latency 0.00 0.00
clkin (in) 0.00 0.00 r
clktree root/I (bufbdl) 0.00 0.00 r
clktree root/Z (bufbdl) 2.20 * 2.20 r
clktree 1/I (bufbdl) 0.00 2.20 r
clktree 1/7 (bufbdl) 0.30 ~* 2.50 r
din reg/CP (dfnrbl) 0.00 2.50 r
din reg/Q (dfnrbl) <- 0.32 * 2.82 r
dout reg/D (dfnrbl) 0.00 2.82 r
data arrival time 2.82
clock clkin (rise edge) 10.00 10.00
clock source latency 0.00 10.00
clkin (in) 0.00 10.00 r
clktree_root/I (bufbdl) 0.00 10.00 r
clktree_root/Z (bufbdl) 2.20 * 12.20 r
clktree 2/I (bufbdl) 0.00 12.20 r
clktree 2/7Z (bufbdl) 0.10 * 12.30 r
dout_reg/CP (dfnrbl) 0.00 12.30 r
library setup time -0.08 12.22
data required time 12.22
data required time 12.22
data arrival time -2.82
slack (MET) 9.40

Let’s look at that trace in a little more detail. The timing calculation is like this:

slack = period + capture clock
- data_arrival
slack = period + Tclktree root + Tclktree 2 - Tsu

- Tclktree root + Tclktree 1 + Tcp2q)

Il
—
o
o
+
N
N
o
+

0.10 - 0.08
0.30

|
N
N
(@)
+
+
(@)
w
N

= 9.40

Now let’s turn on OCV analysis. In this example, I’'m using an SDF file with the worst case
values in the 3" part of the triplet, and the not-quite-worst-case values in the 1% part of the triplet.
So, I turn on OCV with the following command:

read sdf \
-analysis type on chip variation \
-min type sdf min \ N
-max type sdf max \
ocv.sdf

SNUG San Jose 2005 64 Working with PLLs in PrimeTime

If 1 were using parasitics, | might use something like this:

set_operating conditions \
—analysis type on chip variation \
-min MIN -max MAX

What happens when we turn on OCV? Well, PT will calculate the worst case. The worst case is
where the terms in the first line are at their minimums and those on the second line are at their
maximums:

= 9.18

And here’s the trace:

pt _shell> report timing -input pins -path type full clock expanded -from
din reg -to dout reg
R R dh b b dh b b 2h Sh b dh Sh S b 2h Sh b S eh b b 2b Ib S 2 Sh b b Sh A Sh b 2b eb b b 2h Ib o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_basic
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

SNUG San Jose 2005 65 Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by clkin)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by clkin)
Path Group: clkin

Path Type: max

Point Incr Path
clock clkin (rise edge) 0.00 0.00
clock source latency 0.00 0.00
clkin (in) 0.00 0.00 r
clktree root/I (bufbdl) 0.00 0.00 r
clktree root/Z (bufbdl) 2.20 * 2.20 r
clktree 1/I (bufbdl) 0.00 2.20 r
clktree 1/7 (bufbdl) 0.30 ~* 2.50 r
din reg/CP (dfnrbl) 0.00 2.50 r
din reg/Q (dfnrbl) <- 0.32 * 2.82 r
dout reg/D (dfnrbl) 0.00 2.82 r
data arrival time 2.82
clock clkin (rise edge) 10.00 10.00
clock source latency 0.00 10.00
clkin (in) 0.00 10.00 r
clktree_root/I (bufbdl) 0.00 10.00 r
clktree_root/Z (bufbdl) 2.00 * 12.00 r
clktree 2/I (bufbdl) 0.00 12.00 r
clktree 2/7Z (bufbdl) 0.08 =* 12.08 r
dout_reg/CP (dfnrbl) 0.00 12.08 r
library setup time -0.08 12.00
data required time 12.00
data required time 12.00
data arrival time -2.82
slack (MET) 9.18

5.2 Enter CRPR

But is that really correct? The value for Tclktree_root shows up twice in the calculation. We
have used its min value in one place, and its max value in another. This is not correct. OCV is
not a cycle-to-cycle variation. The clktree_root buffer can be an max or min (or somewhere in
between), but it can’t be at different values on subsequent cycles. Whether we use the min or
max value, the slack will end up being 9.38.

This phenomenon is known as “common path pessimism” or “clock reconvergence pessimism”.
PT can correct this error by examining the clock paths and identifying the common elements.
Instead of using the same value for common elements, it does the simplistic (incorrect)
calculation above, and then adds in a correction factor to the slack. The correction factor (called
“clock reconvergence pessimism”) is the sum of all the differences between min and max for the
common elements.

PT can do this, but you have to turn the feature on:

set timing remove clock reconvergence pessimism true

SNUG San Jose 2005 66 Working with PLLs in PrimeTime

Also, because of the values | have chosen for delays and OCV, it is necessary to change the
default value for timing_crpr_threshold_ps. This variable sets the value (in ps) below which PT

will not bother to adjust for OCV.

set timing crpr threshold ps 1

Now if we run the report, we get the correction factor and the correct slack:

pt_shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg

Kk kK K Kk k kK ok ok kK Kk Kk ok Kk ok ok ok Kk Kk ok Kk ok ok ok Kk kR k ok ok ok ok

Report timing

-path full clock expanded
-delay max

-input pins

-max paths 1

Design ocv basic

Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Startpoint: din reg
Endpoint: dout reg
Path Group: clkin
Path Type: max

(rising edge-triggered flip-flop clocked by clkin)
(rising edge-triggered flip-flop clocked by clkin)

clock clkin (rise edge)
clock source latency
clkin (in)

clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

clock clkin (rise edge)
clock source latency
clkin (in)

clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
dout reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time
data required time

COO0OO0OONOOOO
N
o
*

.00
.00
.00
.00
.00 *
.00
08 *

OONOO OO

-0.08

[T T o T o T B R

EBRBRHB

data required time
data arrival time

slack (MET)

SNUG San Jose 2005

67

Working with PLLs in PrimeTime

The “clock reconvergence pessimism” reflects the difference between min and max values for
the shared clock element clktree_root (2.2 — 2.0 = 0.2).

5.3 OCV and PLLs

Now let’s drive this little circuit from a pll:

1.2
/)
dInD dlt npac 25
din_reg /—\
elktn[>tk tapad a ezl ‘ dout_reg deutped— > dout
PLL clktree_root cl ree=1
M U u Elktree=Z
/1. 2022 027/0.30 _ A
0.08/0.10 \f_l}
0.90/1.00

Figure 5-2
Once again, | have only applied OCV to the clock elements to simplify the example.

Looking at this, we are immediately faced with an issue: how do we assign the source latency to
the pll clock? The delays through the elements in the feedback path have variable delays.

SNUG San Jose 2005 68 Working with PLLs in PrimeTime

The most obvious approach is to calculate a min path and a max path, and apply min and max
source latencies. The min value will be Tref_min — Tfb_max; the max value will be Tref_max —
Tfb_min.

set timing remove clock reconvergence pessimism true

create clock -period 10.0 -name clkin [get ports clkin]
set_propagated clock clkin

create clock -period 10.0 -name pllout [get pins PLL/OUT]
set_propagated clock pllout

set path [get timing paths -delay max rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set ref delay max [get attribute $ path arrival]

set path [get timing paths -delay min rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set ref delay min [get attribute $ path arrival]

set path [get timing paths -delay max rise \
-from [get_pins PLL/OUT] \
-to [get_pins PLL/FB] \

]

set fb delay max [get attribute $ path arrival]

set path [get timing paths -delay min rise \
-from [get_pins PLL/OUT] \
-to [get_pins PLL/FB] \

]

set fb delay min [get attribute $ path arrival]

set_clock latency -early -source \
[expr $ ref delay min - $ fb delay max] \
[get_clocks pllout]

set_clock latency -late -source \

[expr $ ref delay max - $ fb delay min] \
[get_clocks pllout]

SNUG San Jose 2005 69 Working with PLLs in PrimeTime

Now look at the clock skew report:

pt _shell> report clock -skew

Kk K ok Kk ok kK k ok ok k ok Kk ok ok kK kK k ok ok k ok Kk ok ok k kK kK ok kK ok
Report : clock skew

Design : ocv_pll

Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Min Condition Source Latency Max Condition Source Latency
Object Early r Early f Late r Late f Early r Early f Late r ©Late f Rel clk
pllout -2.40 -2.40 -1.98 -1.98 -2.40 -2.40 -1.98 -1.98

Note: set_clock_latency also has —min/-max options. If you use those instead, you get the
following skew report:

pt shell> report clock -skew

Kk kA Ak khkhk ok kA A AR Ak ko hk kA KKK Kk kk ok k ok k& &Kk KkKk*
Report : clock skew

Design : ocv_pll

Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Min Condition Source Latency Max Condition Source Latency
Object Early r Early f Late r Late f Early r Early f Late r ©Late f Rel clk
pllout -2.40 -2.40 -2.40 -2.40 -1.98 -1.98 -1.98 -1.98

Since all the timing reports seem to use early/min against late/max, both sets of options have the
same effect (in the reports that | have run). In all the timing traces shown below, it makes no
difference whether you use early/late or min/max. | think that early/late is “more correct” in this
case. I’d be interested to know if there are any timing reports where the distinction matters.
Anyway, the report has two values now.

But does this approach get the correct slack values?

SNUG San Jose 2005 70 Working with PLLs in PrimeTime

Let’s start with the flop-to-flop path. To avoid the chance of using different delays for the same
gate in a single calculation, let’s look at the two extreme cases (Tref@min/Tfb@max and

Tref@max/Tth@min) separately:

Case 1: Trefclk@min, Case2: Trefclk@max, Tfh@min
Tfh@max

Tclkinpad 0.9 1.0

Tclktree root 2.2 2.0

Tclktree 2 0.10 0.08

Tfbdelay 1.0 0.9

Source latency -2.40 -1.98

Figure 5-3

Flop-to-flop setup — Case 1:

slack = period + capture_ clock
- data arrival

slack = period + Tsrclat + Tclktree root + Tclktree 2 - Tsu
- Tsrclat + Tclktree root + Tclktree 1 (max) + Tcp2q)
= 10.0 + -2.40 + 2.2 + 0.10 - 0.08
- + -2.40 + 2.2 + 0.30 + 0.32
= 9.4

Flop-to-flop setup — Case 2:

slack = period + Tsrclat + Tclktree root + Tclktree 2 - Tsu
- Tsrclat + Tclktree root + Tclktree 1 (max) + Tcp2q)
= 10.0 + -1.98 + 2.0 + 0.08 - 0.08
- + -1.98 + 2.0 + 0.30 + 0.32

= 9.38

So, the minimum slack should be 9.38. What did PT get?

pt shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg
R R IR b 2 db b db Sb b dh dh I b db S b d Ih b b db Ib b 2 Sh b dR Sb b 2 db b i db b 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max_paths 1
Design : ocv pll

Version: V-2004.06
PR I b b b b b db b b b b b b b b b b b b db b b b b b b b b b b b b db b b b i b4

SNUG San Jose 2005 71

Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)
Path Group: pllout

Path Type: max

Point Incr Path
clock pllout (rise edge) 0.00 0.00
clock source latency -1.98 -1.98
PLL/OUT (DUMMYPLL) 0.00 -1.98 r
clktree root/I (bufbdl) 0.00 -1.98 r
clktree root/Z (bufbdl) 2.20 * 0.22 r
clktree 1/I (bufbdl) 0.00 0.22 r
clktree 1/7 (bufbdl) 0.30 ~* 0.52 r
din reg/CP (dfnrbl) 0.00 0.52 r
din reg/Q (dfnrbl) <- 0.32 * 0.84 r
dout reg/D (dfnrbl) 0.00 0.84 r
data arrival time 0.84
clock pllout (rise edge) 10.00 10.00
clock source latency -2.40 7.60
PLL/OUT (DUMMYPLL) 0.00 7.60 r
clktree_root/I (bufbdl) 0.00 7.60 r
clktree_root/Z (bufbdl) 2.00 * 9.60 r
clktree_Z/I (bufbdl) 0.00 9.60 r
clktree 2/7Z (bufbdl) 0.08 =* 9.68 r
dout_reg/CP (dfnrbl) 0.00 9.68 r
clock reconvergence pessimism 0.62 10.30
library setup time -0.08 10.22
data required time 10.22
data required time 10.22
data arrival time -0.84
slack (MET) 9.38

PT got the correct answer, but the trace looks a little strange. In the explicit calculations above, it
is easy to see that the pll source latency will cancel. But PT used the max source latency value
for the data launch, and the min value for the data capture (don’t forget that -1.98 > -2.401). Yet
it still got the correct slack. How?

Take a look at the “clock reconvergence pessimism” value. The only common element in the
clock paths of the two flops is clktree_root. The min/max difference on this gate is 0.2. So why
is the clock reconvergence pessimism 0.62? Because PT cleverly recognized that the pll source
latency is also a common path. So it gave back an additional -1.98 — (-2.40) = 0.42 of credit! It
works!

SNUG San Jose 2005 72 Working with PLLs in PrimeTime

The same happens on the hold calculation.

pt_shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg -delay min

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
dout reg/CP (dfnrbl)
clock reconvergence pessimism
library hold time

data required time

QOO OONODO O

QO OO ONODONO

.00
.98
.00
.00
.20
.00
.10
.00
.62
.01

=
w
HfhHhB B R BBRB

EBRBRHB

data required time
data arrival time

SNUG San Jose 2005

73

Working with PLLs in PrimeTime

5.4 The OCV/PLL excess pessimism problem

So much for the good news. Now let’s look at the i/o timing. We’ll use the same i/0 constraints

as before:

set_input delay -max 8.0 -clock clkin [get_ports din]
set_input delay -min 0.5 -clock clkin [get_ports din]
set_output_delay -max 2.0 -clock clkin [get ports dout]
-clock clkin

set_output_delay -min [expr -1.0 * 0.5]
Let’s start with the setup check from input din:

Din setup — Case 1:

slack = period + capture clock - Tsu
- data_arrival

slack = period + Tsrclat + Tclktree root
- (Tin + Tinpad

=1
-

+ -2.40 + 2.2

0.0
8.0 + 1.2

= 0.79

Din setup — Case 2:

slack = period + Tsrclat + Tclktree root
- (Tin + Tinpad

=1
=

+ -1.98 + 2.0
+ 1.2

0.0
8.0

= 1.01
So, the minimum slack should be 0.79.

What did PT get?

[get_ports dout]

Tclktree 1(min) - Tsu

)
0.27 - 0.08

)
Tclktree 1(min) - Tsu

)
0.27 - 0.08

pt _shell> report timing -input pins -path type full clock expanded -from din

R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

LR IR R e S b I S b I Sb b I S b I Sb b S b S S S Jb e Sh b S b S b I S b

SNUG San Jose 2005 74

Working with PLLs in PrimeTime

Startpoint: din (input port clocked by clkin)
Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock clkin (rise edge)

clock network delay (propagated)

input external delay
din (in)

dinpad/I (bufbdl)
dinpad/Z (bufbdl)
din reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)

din reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time

data required time

.00
.40
.00
.00
.00
.00
.27
.00
.00
.08

O W WO owOowoo
[eNe)
[eNe)
[T B B

O WWYWWWOWOOIJIJ0
o
o
BB RERBRHR

data required time
data arrival time

slack (MET)

Oops. What went wrong?

The problem here is an undetected clock reconvergence pessimism. PT used the min source
latency (-2.40), which is based on the max Tfb, which uses Tclktree_root=2.2. Then the path
went through Tclktree_root directly, and PT used 2.0. This is clock reconvergence pessimism,
but PT doesn’t know about it, so the clock reconvergence pessimism value is 0.00. This isn’t
really PT’s fault. PT doesn’t know about the pll, so it can’t see the common path.

The hold is wrong, too:

Din hold — Case 1:

slack = early data
- (late clock + Th)
slack = Tsid min + Tindpad

- (Tsrclat + Tclktree root + Tclktree 1 (max)

= 0.5 + 1.2
- (-2.40 + 2.2

=1.59

SNUG San Jose 2005

+ 0.30

75

+ Th)

+ 0.01)

Working with PLLs in PrimeTime

Din hold — Case 2:

slack = Tsid min + Tindpad

- (Tsrclat + Tclktree root + Tclktree 1 (max)

= 0.5 + 1.2

- (-1.98 + 2.0 + 0.30

= 1.37

So, the minimum slack is 1.37. But PT got:

+ Th

)

+ 0.01)

pt _shell> report timing -input pins -path type full clock expanded -from din -

delay min

KKK AKRKAAKRKA A KRR AR AR A AR A AN A A AR A A A A AR XA A XKk * K

Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Startpoint: din (input port clocked by clkin)
Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock clkin (rise edge)

clock network delay (propagated)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)

din reg/CP (dfnrbl)
clock reconvergence pessimism
library hold time

data required time

OO OO ONODORrO

.00
.98
.00
.00
.20
.00
.30
.00
.00
.01

@]
(@]
Hh Hh Fh Hh Hh

EBRBRHB

data required time
data arrival time

slack (MET)

SNUG San Jose 2005

76

Working with PLLs in PrimeTime

So, PT has excess pessimism due to the fact that it doesn’t know about the pll adjustment
explicitly.

SNUG San Jose 2005 77 Working with PLLs in PrimeTime

6 OCV/PLL excess pessimism workarounds

6.1 Forcing OCV off on the fb path

Recognize that the io path calculation will always be wrong as long as the ios are referenced to
the external clock and the feedback path component of the source latency has multiple values.
Why? Because the effect of a delay in the feedback path is the opposite of what it is in the main
path. A larger delay will produce an earlier source latency, but a longer clock path. So, if it
doesn’t know about the clock reconvergence, PT will either use early source latency / slow clock
or late source latency / fast clock, both of which are wrong.

Therefore, one approach to working around this problem that has been suggested (and | believe is
used by at least one vendor) is to turn off OCV on all the elements in the fb path .

Before showing the code to do this, | want to show the effect..

Here’s our example again, with the values forced to max:

1.2
/X
dInD dlt npiac 25
din_reg m
ClkInD clk irpad ! - 1) dout_reg doutpad DdDUt
09/10 cliktreesz
2.2 0.27/0.30 _ s
0.10 N
1.00
Figure 6-1

The OCV effect is retained on clkinpad (Tref), since it will never share gates with the clock path.
Therefore, the code uses “set_clock latency —early” and “set clock latency —late”, but only a
single value for $_fb_delay.

set_clock_latency -early -source \
[expr $ ref delay min - $ fb delay] \
[get_clocks pllout]

set_clock latency -late -source \

[expr S ref delay max - S fb delay] \
[get_clocks pllout]

The early source latency value will be 0.9 — (2.2 + 0.1 + 1.0) = -2.40.
The late source latency value will be 1.0 — (2.2 + 0.1 + 1.0) = -2.30.

SNUG San Jose 2005 78 Working with PLLs in PrimeTime

OCV is retained on clktree_1 as well, since it is not part of the feedback path.

This approach works fine on the din setup path:

pt _shell> report timing -input pins -path type full clock expanded -from din

Kk kK Kk Kk kK ok ok ok Kk Kk Kk kK ko kK Kk k ok Kk ok ok ok Kk kR k k ok ok ok

Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: din (input port clocked by clkin)
Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock clkin (rise edge)

clock network delay (propagated)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)

din reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time

data required time

.00
.40
.00
.00
.20
.00
.27
.00
.00
.08

o
o
[n T T o B B

oo
(@]
EBRRBRHB

data required time
data arrival time

slack (MET)

SNUG San Jose 2005

79

Working with PLLs in PrimeTime

But it doesn’t work on the hold path:

pt _shell> report timing -input pins -path type full clock expanded -from din -

delay min

KKK AKRKAAKRA A KRR AR AR A A AR A AR A AR AR A A AR XA A XKk kK

Report : timing

-path full clock expanded

-delay min

-input pins

-max paths 1
Design : ocv_pll
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: din (input port clocked by clkin)
Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock clkin (rise edge)

clock network delay (propagated)

input external delay
din (in)

dinpad/I (bufbdl)
dinpad/Z (bufbdl)
din reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)

din reg/CP (dfnrbl)

clock reconvergence pessimism

library hold time
data required time

OO OO ONMNODONO

.00
.30
.00
.00
.20
.00
.30
.00
.00
.01

@]
(@)
Hh Hh Fh Fh Hh

EBRRBRHB

data required time
data arrival time

slack (MET)

The correct slack is 1.37. So this approach results in excess optimism.

SNUG San Jose 2005

80

Working with PLLs in PrimeTime

If I instead force the feedback path values to all mins, the hold path works but the setup path is

optimistic:

pt _shell> report timing -input pins -path type full clock expanded -from din

R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06-SP1

KKK AKRKAAKRA A KRR AR AR A AR A AR A AR A A A A AR XA A XK,k K

Startpoint: din (input port clocked by clkin)
Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock clkin (rise edge)

clock network delay (propagated)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)

din reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time

data required time

.00
.08
.00
.00
.00
.00
.27
.00
.00
.08

o
o
[n T B B B

EBRRBRHB

data required time
data arrival time

slack (MET)

pt shell> report timing -input pins -path type full clock expanded -from din -

delay min
R R I b b b b b I I Sh b b 2h Sh b 2 Ih b b 2h b I 2 Sh b b SR ab b 2b db b b 2h Ib o 4
Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06-SP1

LRI R e Sb b I S b I Sb b I S b I Sb b S S S S S b Sb db S b I Sb db 3 Sb b 3

SNUG San Jose 2005 81

Working with PLLs in PrimeTime

Startpoint: din (input port clocked by clkin)
Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock clkin (rise edge)

clock network delay (propagated)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)

din reg/CP (dfnrbl)
clock reconvergence pessimism
library hold time

data required time

QOO OONODO O

.00
.98
.00
.00
.00
.00
.30
.00
.00
.01

@)
(@]
Hh Hh Hh Fh Hh

B RBRHB

data required time
data arrival time

slack (MET)

The effect is similar for internal paths. Here’s the all-max trace for setup:

pt _shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg
LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

SNUG San Jose 2005 82

Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/7 (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
dout reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time

data required time

.00
.40
.00
.00
.20
.00
.10
.00
.10
.08

[uy

[T o T B T B A

EBRBRHB

data required time
data arrival time

slack (MET)

The problem here is more subtle. Since this is an internal path, PT knows about the clock
reconvergence pessimism due to the min/max source latency, and applies the correct adjustment.
But notice that buffer clktree_2 is in the feedback path and in the path leading to the capture flop.
Because we have forced OCV off on this buffer, the very real slack reduction due to OCV has

been removed. Again, the slack is optimistic.

But the all-max approach is correct on internal hold:

pt _shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg -delay min
R b I b b b b b Sh b dh eh S b 2h Sh b S eh b b 2b Sh b 2 Sh b b Sh ah b b dh Ib b 2b Ib o 4
Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

LR IR R e S b I b b I Sb dE I S b I Sb b S S S S I S Jb I Sh b S b I S b I S b

SNUG San Jose 2005 83

Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/7 (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
dout reg/CP (dfnrbl)
clock reconvergence pessimism
library hold time

data required time

QOO OONODONO

QO OO ONODONO

.00
.30
.00
.00
.20
.00
.10
.00
.10
.01

(@]
~J
B B BB RBR

=
o
BB RBRHB

data required time
data arrival time

slack (MET)

As you might expect, the all-min approach gets the setup slack right, but the hold is optimistic:

pt _shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg -delay max
LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

RS b e b b I S b I Sb b I S I Sb b S S S S S S db I Sb b S b S 2b I S 3b

SNUG San Jose 2005 84

Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/7 (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
dout reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time

data required time

.00
.08
.00
.00
.00
.00
.08
.00
.10
.08

[T o T B T B R

EBRBRHB

data required time
data arrival time

slack (MET)

pt _shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg -delay min
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

RS b e Sb b I Sb b I Sb b I S 2 I Sb b I S S S S S Sb e Sb b S b I Sb 2b I Sb 3b 4

SNUG San Jose 2005 85

Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)
Path Group: pllout

Path Type: min

Point Incr Path
clock pllout (rise edge) 0.00 0.00
clock source latency -2.08 -2.08
PLL/OUT (DUMMYPLL) 0.00 -2.08 r
clktree root/I (bufbdl) 0.00 -2.08 r
clktree root/Z (bufbdl) 2.00 * -0.08 r
clktree 1/I (bufbdl) 0.00 -0.08 r
clktree 1/7 (bufbdl) 0.27 * 0.19 r
din reg/CP (dfnrbl) 0.00 0.19 r
din reg/Q (dfnrbl) <- 0.32 * 0.51 £
dout reg/D (dfnrbl) 0.00 0.51 £
data arrival time 0.51
clock pllout (rise edge) 0.00 0.00
clock source latency -1.98 -1.98
PLL/OUT (DUMMYPLL) 0.00 -1.98 r
clktree_root/I (bufbdl) 0.00 -1.98 r
clktree_root/Z (bufbdl) 2.00 * 0.02 r
clktree_Z/I (bufbdl) 0.00 0.02 r
clktree 2/7Z (bufbdl) 0.08 =* 0.10 r
dout_reg/CP (dfnrbl) 0.00 0.10 r
clock reconvergence pessimism -0.10 0.00
library hold time 0.01 0.01
data required time 0.01
data required time 0.01
data arrival time -0.51
slack (MET) 0.50

So, neither all-max nor all-min gives the correct timing. However, running each separately and
combining the results will give the correct result. Recall that when each approach was wrong, it
was optimistic. So, the minimum slack will always refer to the more pessimistic, i.e. correct,
result if you run both.

So, instead of running “worst-case” analysis and “best-case” analysis, we will have to run

“worst-case, early pll”, “worst-case, late pll”, “best-case, early pll”, and “best-case, late pll”
(where early pll means fb all-max and late pll means fb all-min).

SNUG San Jose 2005 86 Working with PLLs in PrimeTime

So, how do we force the all-min and all-max values onto the gates in the fb loop? To illustrate
this better, 'm going to change the example a little bit. Up to now, we have ignored net delays
to simplify the examples. Now | want to include at least one net delay. So that the expected
slack numbers don’t change, Il split the delay in the “fbdelay” buffer into 2 components — a cell
delay and a net delay, like this:

1.2
//’——~\X
dInD dinpac 25
din_reg /_\
ek tn[> clk Lripad dout_reg deutpad [T>dout

u PLL cliktree_root clktreecl

0.9/10 2 0/2 2 cliktreesz

022 027/030 ___#

fhdelay

0.08/0.10 0.45/0.50

0.45/0.50
Figure 6-2

I’ve done this so that the net delay will be seen more explicitly.

There are a variety of ways to force the delay values along the feedback loop. You could use perl
to modify the SDF and create fb-max and fb-min (early_pll and late_pll) versions. You could
use the tricks shown in reference [4] to perl the output of report_timing to create
set_annotated_delay commands, or even a mini-SDF file. But I think the most straightforward
way is to use get_timing_paths to fetch the desired timing information after the OCV SDF has
been read in and then use set_annotated_delay to force the desired value for min and max.

The basic approach is to do a get_timing_paths on the feedback path, then extract a collection
called “points”, which is an attribute of the path. We can then foreach (foreach in_collection)
our way through these points, and use the arrival attribute of each point to calculate the
appropriate value for set_annotated delay.

SNUG San Jose 2005 87 Working with PLLs in PrimeTime

So, here’s my proc for doing this - &build_cmd_to_fix_delays. It takes one argument — the path
returned from get_timing_paths. It returns a command for setting the annotated delays:

proc &build cmd to fix delays { path} {

init internal variables

set cmd {}

set prevpin {}

set prevarrival 0

Go through points in path

foreach _in collection point [get_attribute S path points] {
set object [get_attribute $ point object]
set pinname [get_object name $ object]
set class [get_attribute $ object object class]
set arrival [get_attribute S point arrival]
If this isn't the first pin

if {$_prevpin != {} } |
And it *is* a pin (not a port)
if {$ class == "pin"} {

set pin direction [get_attribute $ object pin direction]
If this is an input, then the path is a net
if {$ pin direction == "in"} {

set nextcmd "set annotated delay -net "

If this is an output, then the path is a cell

} elseif {$ pin direction == "out"} ({
set nextcmd "set annotated delay -cell "
} else {
echo "Err" "or - $ pinname not an in or out port - direction is

$ pin direction”
}
Calculate incremental delay
set incr [expr $ arrival - $ prevarrivall]
Finish command
set nextcmd "$ nextcmd -from $ prevpin -to $ pinname $ incr ;\n"
Append to list of commands
set cmd "$ cmd $ nextcmd"

}
}

Prepare for next

set prevpin $ pinname

set prevarrival $ arrival
}
Return list of commands
return $ cmd

}

SNUG San Jose 2005 88 Working with PLLs in PrimeTime

A few notes on this code:

1) The get_timing_paths command itself (using the —delay option) will determine whether
the min or max values are used in the set_annotated_delay commands.

2) The set_annotated_delay command needs to know whether the delay belongs to a net or a
gate. To determine this, we can look at the pin direction of the point under consideration.
If it is an input, then the previous point must have been an output, and the path is a net. If
it is an output, then the previous point must have been an input, and the path is a “cell”
(gate) path.

3) The check for “$ class == pin” is to handle the case where the timing path starts or ends
on a port. The “net” between the port and the pad pin is a Verilog anomaly —see reference
[1].

4) We don’t really want to do the set annotated delay commands as we go, because this
will cause many unnecessary timing updates. Instead, we will build a set of
set_annotated_delay commands in a variable for later processing.

Now we can use this proc in our script.

First, we turn on CRPR and create the clocks as usual:

set timing remove clock reconvergence pessimism true

create_clock -period 10.0 -name clkin [get_ports clkin]
set_propagated clock clkin

create_clock -period 10.0 -name pllout [get pins PLL/OUT]
set_propagated clock pllout

Now we get the feedback path in the usual way. Notice, however, that the delay_type argument
is now based on a variable “ delay type”. This would be set to “max_rise” for early pll and
“min_rise” for late pll.

set path [get timing paths -delay $ delay type \
-from [get_pins PLL/OUT] \
-to [get_pins PLL/FB] \

]

Since we specified the delay type with get_timing_paths, it is perfectly safe to use the arrival

value as the Tfb. We will be overriding the delays along this path, but the override values will be
the same as what was used on this path.

set fb delay [get_attribute $ path arrivall]

Now we can create the set_annotated_delay commands.

set sadcmds [&build cmd to fix delays $ path]

SNUG San Jose 2005 89 Working with PLLs in PrimeTime

We put the command string in a variable for later execution. We’ll execute it at the end before
generating reports to avoid an unnecessary timing updates.

Now we fetch the min and max refclk delays:

set path [get timing paths -delay max rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set ref delay max [get attribute $ path arrival]

set path [get timing paths -delay min rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set ref delay min [get attribute $ path arrival]

Now we can set the min and max source latencies. But now the min and max come only from
the min and max ref delays; there’s only one feedback delay value.

set_clock latency -early -source \
[expr $ ref delay min - $ fb delay] \
[get_clocks pllout]

set_clock latency -late -source \
[expr $ ref delay max - $ fb delay] \
[get_clocks pllout]

We set the i/o constraints as usual:

set_input delay -max 8.0 -clock clkin [get_ports din]

set_input delay -min 0.5 -clock clkin [get_ports din]
set_output_delay -max 2.0 -clock clkin [get ports dout]

set output_delay -min [expr -1.0 * 0.5] -clock clkin [get_ports dout]

And now we finally execute the set_annotated_delay command string:

eval $ sadcmds

If we run all this with $ delay type set to “min_rise”, and generate summary reports, we get:

pt shell> report timing -path type summary -max paths 100 -nworst 1 -delay max
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path summary
-delay max
-max paths 100
Design : ocv_pll
Version: V-2004.06

LRI R e S b I S b I Sb IE I S b I Sb b S b S S S S Jb I Sb db S b I Sb b 3 Sb b

SNUG San Jose 2005 90 Working with PLLs in PrimeTime

Startpoint Endpoint Slack

dout reg/CP (dfnrbl) dout (out) @
din (in) din reg/D (dfnrbl) 0.9
din reg/CP (dfnrbl) dout reg/D (dfnrbl) @
1

pt _shell> report timing -path type summary -max paths 100 -nworst 1 -delay min
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing
-path summary
-delay min
-max_paths 100
Design : ocv_pll
Version: V-2004.06

KKK AKRKAAKRKA A KRR AR AR A AR A AN A A AR A A A A AR XA A XKk * K

Startpoint Endpoint Slack
dout_reg/CP (dfnrbl) dout (out) 2.32
din reg/CP (dfnrbl) dout reg/D (dfnrbl) 0549
din (in) din reg/D (dfnrbl) &

If we run it with §_delay_type set to “max_rise”, the summary reports look like this:

pt _shell> report timing -path type summary -max paths 100 -nworst 1 -delay max
R R dh b b dh b b 2h Sh b dh Sh S b 2h Sh b S eh b b 2b Ib S 2 Sh b b Sh A Sh b 2b eb b b 2h Ib o 4
Report : timing
-path summary
-delay max
-max _paths 100
Design : ocv_pll
Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

Startpoint Endpoint Slack
dout reg/CP (dfnrbl) dout (out) 3
din (in) din reg/D (dfnrbl) @
din reg/CP (dfnrbl) dout reg/D (dfnrbl) 940

pt shell> report timing -path type summary -max paths 100 -nworst 1 -delay min
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path summary
-delay min
-max paths 100
Design : ocv_pll
Version: V-2004.06

LR IR R e S b I S b I Sb b I S b I Sb b S S S S I S db I Sh b S b I Sb b I S b

Startpoint Endpoint

dout reg/CP (dfnrbl) dout (out)

din reg/CP (dfnrbl) dout reg/D (dfnrbl)
din (in) din reg/D (dfnrbl)

SNUG San Jose 2005 91 Working with PLLs in PrimeTime

The slack values in red are the correct calculations. The corresponding path in the other run will
be more optimistic and so it will not matter.

Let’s take a look at that sadcmds variable. With $ delay type set to “min_rise”, it looks like
this:

pt shell> echo $ sadcmds

set annotated delay -net -from PLL/OUT -to clktree root/I 0.0 ;

set annotated _delay -cell -from clktree root/I -to " clktree root/Z 2.0 ;

set annotated _delay -net -from clktree root/Z -to clktree 2/I
4.29999999998e-05 ;

set annotated delay -cell -from clktree 2/I -to clktree 2/7Z 0.08 ;

set annotated _delay -net -from clktree 2/Z -to fbdelay/I 0.45 ;

set annotated _delay -cell -from fbdelay/I -to fbdelay/z 0.45 ;

set “annotated _delay -net -from fbdelay/Z -to PLL/FB 0.0 ;

You can see it is using min delays (2.0 for the clktree_root, for example). You can also see the
net delay I inserted (0.45) from clktree_2/Z to fhdelay/I.

With § delay type set to “max_rise”, it looks like this:

pt shell> echo $ sadcmds

set annotated delay -net -from PLL/OUT -to clktree root/I 0.0 ;

set annotated _delay -cell -from clktree root/I -to " clktree root/Z 2.2 ;

set annotated _delay -net -from clktree root/Z -to clktree 2/I
4.29999999998e-05 ;

set annotated delay -cell -from clktree 2/I -to clktree 2/7Z 0.1 ;

set annotated _delay -net -from clktree 2/7Z -to fbdelay/I 0.5 ;

set annotated _delay -cell -from fbdelay/I -to fbdelay/Z 0.5 ;

set “annotated _delay —-net -from fbdelay/Z -to PLL/FB 0.0 ;

Now it’s using max delays.

So, we can use this code and run “late_pll” and “early pll” modes to correct for the pll excess
pessimism problem.

SNUG San Jose 2005 92 Working with PLLs in PrimeTime

The code shown above only works for SDF analysis. Since the set_timing_derate command will
derate our set_annotated delay values, we need to turn off timing derate for the cells and nets
that we are working on. This means adding “set timing derate 1.0 [get cells <cellname>]" and
“set_timing_derate [get nets <netname>]” to the set _annotated delay commands. Without
going into detailed proofs, here’s the code that handles parasitics:

proc &build cmd to fix delays { path} {

init internal variables

set cmd {}

set prevpin {}

set prevarrival 0

Go through points in path

foreach _in collection point [get_attribute S path points] {
set object [get_attribute $ point object]
set pinname [get_object name $ object]
set class [get_attribute $ object object class]
set arrival [get_attribute $ point arrival]
If this isn't the first pin

if {$_prevpin != {} } {
And it *is* a pin (not a port)
if {$ class == "pin"} {

set pin direction [get_attribute $ object pin direction]
If this is an input, then the path is a net
if {$ pin direction == "in"} {

set sadcmd "set annotated delay -net "

set netname [get object name [all connected $ object]]

set deratecmd "set timing derate 1.0 \[get nets $ netname\] ;\n"
If this is an output, then the path is a cell
} elseif {$ pin direction == "out"} ({

set sadcmd "set annotated delay -cell "
set cellname [get object name [cell of S pinname]]

set deratecmd "set timing derate 1.0 \[get cells $ cellname\] ;\n"
} else {
echo "Err" "or - $ pinname not an in or out port - direction is

$ pin direction”
}
Calculate incremental delay
set incr [expr $ arrival - $ prevarrival]
Finish command
set sadcmd "$ sadcmd -from $ prevpin -to $ pinname $ incr ;\n"
Append to list of commands
set cmd "$ cmd $ sademd $ deratecmd"
}
}

Prepare for next
set prevpin $ pinname
set prevarrival $ arrival

}

Return list of commands
return $ cmd

}

SNUG San Jose 2005 93 Working with PLLs in PrimeTime

With § delay type set to “min_rise”, $ sadcmds looks like this:

set annotated delay

set timing derate 1.

set annotated delay

set timing derate 1.

set_annotated delay

set timing derate 1.

set annotated delay
set timing derate 1
set annotated delay

set timing derate 1.

set_annotated delay

set timing derate 1.

set annotated delay

-net

0

-cell

-net

0

-cell

0

-net

[get nets clktreelZ] ;
-cell

[get cells fbdelay] ;

0

-net

[get _nets clktree]

set_timing derate 1.0 [get nets pllfb] ;

-from clktree 2/I -to clktree 2/7Z 0.093738 ;
.0 [get cells clktree 2] ;
-from clktree 2/Z -to fbdelay/I 4e-05 ;

-from PLL/OUT -to clktree root/I 0.0 ;

[get nets pllout] ;

-from clktree root/I -to clktree root/z 0.076052 ;
0 [get cells clktree root] ;

-from clktree root/Z -to clktree 2/I 3.9e-05 ;

-from fbdelay/I -to fbdelay/Z 0.065468 ;

-from fbdelay/Z -to PLL/FB 0.0 ;

The actual delays are different (since I didn’t load in my SDF), but the important thing to notice
is the new “set timing_derate” commands.

SNUG San Jose 2005

94

Working with PLLs in PrimeTime

6.2 Referencing the i/os to the feedback clock

It sure would be nice to find a way to avoid the OCV/PLL excess pessimism problem without
having to double our PT runs for tapeout. After a lot of messing around, | have come up with a
least a partial workaround for this excess pessimism problem , but it is decidedly weird.

Recall that the problem comes in via source latency which contains path information that is
hidden from PT. So, we’re going to have to eliminate the source latency somehow. But if we do
that, how do we get the timing to match between the refclk and the clock tree?

My basic idea is to reference the i/os to the FB pin on the pll. Remember that this has the same
timing as the REF pin on the pll (that’s what all that source latency calculation did), so its timing
is “near” that of the refclk — it is offset by the refclk delay Tref.

dInD dinpac
din_reg

ClkInD clk irpad dout_reg doutpad >C|DUt
PLL clktree_root clktreecl

cliktreesz

fhdelay

Figure 6-3
The clock here is the same as the clock here, offset by Tref

So, if we adjust the i/o constraint values by Tref (min or max), we should be able to force the i/o
timing to be calculated correctly. But it will be calculated without reference to refclk. As we
shall see, PT will have the feedback loop timing in the calculation twice, just as with internal
paths. So, it will see the clock reconvergence pessimism and apply the correct adjustment!

There won’t be any effect on the internal paths, since the source latency, combined with the
CRPR adjustment, always cancels.

In detail, the steps are these:
1. Don’t apply any source latency to the pll output clock.
2. Create a divide-by 1 generated clock at the FB pin of the pll.

3. Reference input/output delays to this new generated clock, adjusting the value by
Tref_min or Tref_max as required.

SNUG San Jose 2005 95 Working with PLLs in PrimeTime

The code looks like this:

create clock -period 10.0 -name clkin [get ports clkin]
set_propagated clock clkin

create clock -period 10.0 -name pllout [get pins PLL/OUT]
set_propagated clock pllout

Create the gen'd clock on the fb pin
create_generated clock \

-source [get pins PLL/OUT] \

-name pll fb clk \

-divide by 1 \

[get_pins PLL/FB]
set_propagated clock pll fb clk

set path [get timing paths -delay max rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]

set ref delay max [get attribute $ path arrival]

set path [get timing paths -delay min rise \
-from [get_ports clkin] \
-to [get_pins PLL/CKREF] \

]
set ref delay min [get attribute $ path arrival]

Remember that we have to adjust the input/ouput delays using the ref clk delay, as follows:

Now set input and output delays using pll fb clk
set_input delay -max \

-clock pll fb clk \

[expr 8.0 - $ ref delay min] \

[get_ports din]

set_input delay -min \
-clock pll fb clk \
[expr 0.5 - $ ref delay max] \
[get_ports din]

set_output _delay -max \
-clock pll fb clk \
[expr 2.0 + $ ref delay max] \
[get_ports dout]

set_output _delay -min \
-clock pll fb clk \
[expr (-1.0 * 0.5) + $ ref delay min] \
[get_ports dout]

First we’ll run this without any OCV to verify it reproduces the slack results when the pll/ocv
problem is not present.

Here’s what the summary timing reports look like for this circuit using the traditional technique,
without OCV:

SNUG San Jose 2005 96 Working with PLLs in PrimeTime

pt _shell> report timing -path type summary -max paths 100 -nworst 1 -delay max
R R IR b b b b dh Sb b d Sh b b Sb Sh b S Ih b b 2b b b 2 Sh b b Sh Sb I dh db b b db Sb o 4
Report : timing
-path summary
-delay max
-max_paths 100
Design : ocv_pll
Version: V-2004.06

KKK AKRKAAKRA A KRR AR AR A AR A AR A AR A A A A AR XA A XK,k K

Startpoint Endpoint Slack
dout_reg/CP (dfnrbl) dout (out) 5.18
din (in) din reg/D (dfnrbl) 0.92
din reg/CP (dfnrbl) dout reg/D (dfnrbl) 9.40
1

pt _shell> report timing -path type summary -max paths 100 -nworst 1 -delay min
R R R b dh dh b S 2h Sh b dh Sh S b 2h Sh b S eh b b 2b Sb S 2 Sh b b Sh Sb b 2h dh b b 2h Sb o 4
Report : timing
-path summary
-delay max
-max paths 100
Design : ocv_pll
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Startpoint Endpoint Slack
dout_reg/CP (dfnrbl) dout (out) 2.32
din reg/CP (dfnrbl) dout reg/D (dfnrbl) 0.51
din (in) din reg/D (dfnrbl) 1.49

And the summary reports using these constraints are the same:

pt shell> report timing -path type summary -max paths 100 -nworst 1 -delay max
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path summary
-delay max
-max paths 100
Design : ocv_pll
Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

Startpoint Endpoint Slack
dout reg/CP (dfnrbl) dout (out) 5.18
din (in) din reg/D (dfnrbl) 0.92
din reg/CP (dfnrbl) dout reg/D (dfnrbl) 9.40
1

pt shell> report timing -path type summary -max paths 100 -nworst 1 -delay min
LR IR R e S b I S b I Sb b I S b I Sb b S S S S S b Sb b S b S b I S b
Report : timing
-path summary
-delay max
-max paths 100
Design : ocv_pll
Version: V-2004.06

LR IR R e Sb b I S b I Sh b I S 2 I Sb b S S I S S S Jb I Sh db I Sb b I Sb b 3 Sb b 3

SNUG San Jose 2005 97 Working with PLLs in PrimeTime

Startpoint Endpoint Slack

dout_reg/CP (dfnrbl) dout (out) 2.32
din reg/CP (dfnrbl) dout reg/D (dfnrbl) 0.51
din (in) din reg/D (dfnrbl) 1.49

So we didn’t break anything.

Now let’s look at the din path with OCV turned on using the new constraints:

pt _shell> report timing -input pins -path type full clock expanded -from din
R R IR b b dh b b dh Sb b 2 dh b b Sh Sh b S Ih b b 2h b b 2 Sh b b Sh Sb b 2 db b dh b 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

SNUG San Jose 2005 98 Working with PLLs in PrimeTime

Startpoint: din (input port clocked by pll fb clk)

Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock pll fb clk (rise edge)
clock pllout (source latency)
PLL/OUT (DUMMYPLL)

clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)

clktree 2/7 (bufbdl)
fbdelay/I (bufbdl)

fbdelay/Z (bufbdl)

PLL/FB (DUMMYPLL) (gclock source)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)

din reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time

data required time

=

OO OO ONOO OO

OFRP OO JORFHOOONOOOO
. L . .

.00
.00
.00
.00
.00
.00
.27
.00
.20
.08

w
(@]
BB HRRBREREBERBERHB

EBRBRHB

data required time
data arrival time

Now we get the expected slack value of 0.79. Look carefully at the report. Both paths now go
through the clock tree, so PT recognizes that it used the min delay for clktree_root in one place
and max delay in another and gives us back the lost 0.20 as clock reconvergence pessimism.

How about hold on din?

pt shell> report timing -input pins -path type full clock expanded -from din -

delay min
R R I I b b b b b I 2 Sh b b 2h Sh b b b b 2h b I 2 Sh b b dh ab b 2h dh b b 2h b o 4
Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

LR IR R e Sb b I S b I Sh b I S b I Sb b S S I S S S b Sb b S b S b 3 S b 3

SNUG San Jose 2005 99

Working with PLLs in PrimeTime

Startpoint: din (input port clocked by pll fb clk)

Endpoint: din reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock pll fb clk (rise edge)
clock pllout (source latency)
PLL/OUT (DUMMYPLL)

clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)

clktree 2/7 (bufbdl)
fbdelay/I (bufbdl)

fbdelay/Z (bufbdl)

PLL/FB (DUMMYPLL) (gclock source)
input external delay

din (in)

dinpad/I (bufbdl)

dinpad/Z (bufbdl)

din reg/D (dfnrbl)

data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)

din reg/CP (dfnrbl)
clock reconvergence pessimism
library hold time

data required time

O OO0 O0OODOONOO OO
e e e L T T

QOO OOOONODO OO

.00
.00
.00
.00
.20
.00
.30
.00
.20
.01

WWWNNNDNDNDNDNDNDNDOO OO

NDNDNDNDNNDNDNDNO O OO

e
oo
HfhHthHh B B BB RBRHB

EBRBRHB

data required time
data arrival time

slack (MET)
Right again!

Internal path setup:

pt _shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg
LR IR R e S b I S b I Sb IE I S b I Sb b S S S S I S b Sh db I Sb b I Sb b S Sb b 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

LRI R e Sb b I S b I Sb b I S b I Sb b S S S S S b Sb db S b I Sb db 3 Sb b 3

SNUG San Jose 2005 100

Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/7 (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
dout reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time

data required time

=

OO OO ONOO OO

OO OO ONMNOO OO
. e

.00
.00
.00
.00
.00
.00
.08
.00
.20
.08

[T o T B T B R

EBRBRHB

data required time
data arrival time

slack (MET)

This is correct. Note that the slack has been reduced by 0.02 relative to the non-OCV case. This
is the effect of clktree_2 being faster that | pointed out earlier. PT has done it right.

Internal path hold:

pt _shell> report timing -input pins -path type full clock expanded -from

din reg -to dout reg -delay min
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full clock expanded
-delay min
-input pins
-max paths 1
Design : ocv_pll
Version: V-2004.06

LR IR R e S b I S b I Sb IE I S b I Sb b S S S S I S db I Sb db S b I S b I Sb b 3

SNUG San Jose 2005 101

Working with PLLs in PrimeTime

Startpoint: din reg (rising edge-triggered flip-flop clocked by pllout)
Endpoint: dout reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: min

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/7 (bufbdl)
din reg/CP (dfnrbl)

din reg/Q (dfnrbl) <-
dout reg/D (dfnrbl)
data arrival time

OO OO ONOO OO
o
o

clock pllout (rise edge) 0.00
clock source latency 0.00
PLL/OUT (DUMMYPLL) 0.00
clktree root/I (bufbdl) 0.00
clktree_root/Z (bufbdl) 2.20 *
clktree 2/I (bufbdl) 0.00
clktree 2/7Z (bufbdl) 0.10 *
dout reg/CP (dfnrbl) 0.00
clock reconvergence pessimism -0.20
library hold time 0.01

data required time

NDNNDODNDNNDNDNDNNO O OO

NDNNDNDNNDNDNDNO O OO

N
~J
B B BB RBR

BB RBRHB

data required time
data arrival time

slack (MET)

This is also correct.

Here are the complete summary reports for setup and hold. They match the desired results (the
circled values in the summary reports from the traditional workaround) exactly:

pt shell> report timing -path type summary -max paths 100 -nworst 1 -delay max

R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path summary
-delay max
-max paths 100
Design : ocv pll
Version: V-2004.06-SP1

LRI R e S b I b b I Sb b I b b I Sb b S S S S I S b Sb b S b I Sb b I S b

Startpoint Endpoint

dout reg/CP (dfnrbl) dout (out)

din (in) din reg/D (dfnrbl)
din reg/CP (dfnrbl) dout reg/D (dfnrbl)
SNUG San Jose 2005 102

Working with PLLs in PrimeTime

pt _shell> report timing -path type summary -max paths 100 -nworst 1 -delay min
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing
-path summary
-delay min
-max _paths 100
Design : ocv_pll
Version: V-2004.06-SP1

KKK AR KA KA AR AR AR A A AR AN A A AR A A A A AR AR A XK Xk Kk

Startpoint Endpoint Slack
dout_reg/CP (dfnrbl) dout (out) 2.22
din reg/CP (dfnrbl) dout reg/D (dfnrbl) 0.48
din (in) din reg/D (dfnrbl) 1.37

| have tried this trick with all sorts of circuits and paths, and it seems to work — as long as no
flops are directly connected to clkin (see below). But I have yet to apply it in a tape-out situation.
I’m not sure if [will in the future. Although it works, the reports don’t model reality, so it makes
me nervous. So, proceed with caution.

6.3 The shell game

But there’s still a fly in the ointment. What if the design has registers directly clocked by clkin?

dini[> dinlpad
dinl_reqg
dinZ_reg
clk in_butf
df“D dinpgad
din_reg
dout_reg g u PoeE Ddout
Clkl‘”D olk bripad B L . P
PLL cliktree_root clktreect
clktree=i
fhdelay

Figure 6-4

Now what? Even without OCV, this isn’t going to work. With OCV turned off, this is what the
path between dinl_reg (on clkin) and din2_reg (on pllout) should look like:

SNUG San Jose 2005 103 Working with PLLs in PrimeTime

pt_shell> report timing -input pins -path type full clock expanded -from

dinl reg -to din2 reg
I A S i S A S i S 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll wclkin
Version: V-2004.06

KKK AKRKAAKRA A KRR AR AR A AR A AN A A AR A A A A AR XA AR KXk K

Startpoint: dinl reg (rising edge-triggered flip-flop clocked by clkin)
Endpoint: din2 reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock clkin (rise edge) 0
clock source latency 0
clkin (in) 0
clkinpad/I (bufbdl) 0
clkinpad/Z (bufbdl) 1.
clkin buf/I (bufbdl) 0.00
clkin buf/Z (bufbdl) 0
dinl reg/CP (dfnrbl) 0
dinl reg/Q (dfnrbl) <- 0
din2 reg/D (dfnrbl) 0
data arrival time

clock pllout (rise edge) 10.00
clock source latency -2.30
PLL/OUT (DUMMYPLL) 0.00

clktree root/I (bufbdl) 0.00
clktree root/Z (bufbdl) 2.20 *
clktree 1/I (bufbdl) 0.00
clktree 1/Z (bufbdl) 0.30 *
din2 reg/CP (dfnrbl) 0.00
clock reconvergence pessimism 0.00
library setup time -0.08
data required time

[T T o T B L B o A

EBRRBRHB

data required time
data arrival time

slack (MET)

SNUG San Jose 2005 104

Working with PLLs in PrimeTime

But this is what it looks like (again, with OCV turned off) using this new technique:

pt_shell> report timing -input pins -path type full clock expanded -from

dinl reg -to din2 reg
I A S i S A S i S 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll wclkin
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: dinl reg (rising edge-triggered flip-flop clocked by clkin)
Endpoint: din2 reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

[T T T B T B o R

EBRRBRHB

Point Incr
clock clkin (rise edge) 0.00
clock source latency 0.00
clkin (in) 0.00
clkinpad/I (bufbdl) 0.00
clkinpad/Z (bufbdl) 1.00
clkin buf/I (bufbdl) 0.00
clkin buf/Z (bufbdl) 0.40
dinl reg/CP (dfnrbl) 0.00
dinl reg/Q (dfnrbl) <- 0.32
din2 reg/D (dfnrbl) 0.00
data arrival time

clock pllout (rise edge) 10.00
clock source latency 0.00
PLL/OUT (DUMMYPLL) 0.00
clktree root/I (bufbdl) 0.00
clktree root/Z (bufbdl) 2.20
clktree 1/I (bufbdl) 0.00
clktree 1/Z (bufbdl) 0.30
din2 reg/CP (dfnrbl) 0.00
clock reconvergence pessimism 0.00
library setup time -0.08

data required time

data required time
data arrival time

The problem is that we are no longer taking the PLL’s time shift into account. The trick of
referencing the i/os to the feedback clock basically moved the operation out in time. If we leave
clkin at time zero, the path from dinl1_reg to din2_reg (from clkin to the pll clock) will be all

messed up - it will fail to take into account the behavior of the pll.

SNUG San Jose 2005 105

Working with PLLs in PrimeTime

We can fix this by adding the appropriate amount of source latency to clkin:

set_clock latency -source \
[expr S fb delay - $ ref delay]
[get_clocks clkin]

Now the path works (without OCV):

\

pt_shell> report timing -input pins -path type full clock expanded -from

dinl reg -to din2 reg

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll wclkin
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Startpoint: dinl reg (rising edge-triggered flip-flop clocked by clkin)
Endpoint: din2 reg (rising edge-triggered flip-flop clocked by pllout)

Path Group: pllout
Path Type: max

clock clkin (rise edge)
clock source latency
clkin (in)

clkinpad/I (bufbdl)
clkinpad/Z (bufbdl)
clkin buf/I (bufbdl)
clkin buf/zZ (bufbdl)
dinl reg/CP (dfnrbl)
dinl reg/Q (dfnrbl) <-
din2 reg/D (dfnrbl)
data arrival time

clock pllout (rise edge)
clock source latency
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 1/I (bufbdl)
clktree 1/Z (bufbdl)
din2 reg/CP (dfnrbl)
clock reconvergence pessimism
library setup time

data required time

=

OO OOOONOO OO

QOO OOFrOoOONO
. . P

.00
.00
.00
.00
.20
.00
.30
.00
.00
.08

EBREBRRBRHKR

BB RBRHB

data required time
data arrival time

SNUG San Jose 2005

106

Working with PLLs in PrimeTime

Now let’s turn on OCV. We’ll have to do the source latency on clkin using both min and max
values:

set_clock latency -early -source \
[expr S fb delay min - § ref delay max] \
[get_clocks clkin]

set_clock latency -late -source \
[expr S fb delay max - $§ ref delay min] \
[get_clocks clkin]

Now let’s look at the timing trace:

pt_shell> report timing -input pins -path type full clock expanded -from
dinl reg -to din2 reg
R R dh b b dh b b 2h Sh b dh Sh S b 2h Sh b S eh b b 2b Ib S 2 Sh b b Sh A Sh b 2b eb b b 2h Ib o 4
Report : timing
-path full clock expanded
-delay max
-input pins
-max paths 1
Design : ocv_pll wclkin
Version: V-2004.06
R R dh b b dh b b 2h Sh b dh Sh S b 2h Sh b S eh b b 2b Ib S 2 Sh b b Sh A Sh b 2b eb b b 2h Ib o 4

SNUG San Jose 2005 107 Working with PLLs in PrimeTime

Startpoint: dinl reg (rising edge-triggered flip-flop clocked by clkin)
Endpoint: din2 reg (rising edge-triggered flip-flop clocked by pllout)
Path Group: pllout

Path Type: max

Point Incr Path
clock clkin (rise edge) 0.00 0.00
clock source latency 2.40 2.40
clkin (in) 0.00 2.40 r
clkinpad/I (bufbdl) 0.00 2.40 r
clkinpad/Z (bufbdl) 1.00 * 3.40 r
clkin buf/I (bufbdl) 0.00 3.40 r
clkin buf/z (bufbdl) 0.40 * 3.80 r
dinl reg/CP (dfnrbl) 0.00 3.80 r
dinl reg/Q (dfnrbl) <- 0.32 4.12 r
din2 reg/D (dfnrbl) 0.00 4.12 r
data arrival time 4.12
clock pllout (rise edge) 10.00 10.00
clock source latency 0.00 10.00
PLL/OUT (DUMMYPLL) 0.00 10.00 r
clktree_root/I (bufbdl) 0.00 10.00 r
clktree_root/Z (bufbdl) 2.00 * 12.00 r
clktree 1/I (bufbdl) 0.00 12.00 r
clktree 1/Z (bufbdl) 0.27 * 12.27 ¢
din2 reg/CP (dfnrbl) 0.00 12.27 ¢
clock reconvergence pessimism 0.00 12.27
library setup time -0.08 12.19
data required time 12.19
data required time 12.19
data arrival time -4.12
slack (MET) 8.07

The value of “2.40” for clock source latency comes from the “max”, which is § fb delay max -
$ _ref delay min. $ fb_delay_max, in turn, comes from having all the gates in the feedback path
at max. But the bottom half of the trace uses clktree root at 2.0 — its min value. And the clock
reconvergence pessimism value is 0. So, even without going through the detail casel/case2
analysis, we can see that the OCV/PLL excess pessimism is back.

I also tried “superimposing” the two approaches — creating and propagating both the time-zero
and source-latency pll output clocks and controlling which ones interact — only allowing clkin to
interact with the adjusted pllout clock. That also makes the timing work without OCV, but still
exhibits the excess pessimism problem.

| think the problem here is something fundamental. Any time that there is a path that crosses
between the clkin domain and the pllout domain, there will be excess pessimism, because one or
the other of them will always be a calculated value that PT won’t know contains min/max paths.

The reason the “reference the i10S to the feedback clock” trick worked was that I eliminated any
reference to clkin (I could do a remove_clock on clkin and it wouldn’t change the timing

SNUG San Jose 2005 108 Working with PLLs in PrimeTime

reports). Once there are flops directly tied to clkin, there is no way to avoid this domain
crossing.

You can, however, move the problem around. Originally, the excess pessimism appears on the
i/0 paths. By referencing the i/os to the feedback clock, and either adding source latency to clkin
or propagating both sets of clocks, you can move the problem to the dinl_reg/din2_reg interface
—an internal interface, where there might be more timing slack available.

SNUG San Jose 2005 109 Working with PLLs in PrimeTime

7 Conclusion

Complete and accurate modeling of PLLs is a surprisingly complex task, but a very important
one. There are a lot of issues and effects to consider. Hopefully this paper will provide the
reader with the tools necessary to tackle the project successfully.

SNUG San Jose 2005 110 Working with PLLs in PrimeTime

8 Acknowledgements

The author would like to acknowledge the following people for their assistance and review:
Karthik Rajan for doing a complete, thorough review of the entire paper.
Chris Papademetrious for doing a complete, thorough review of the entire paper.

Matt Weber for lending his expertise in OCV and his insights on jitter, as well as slogging his
way through the entire paper.

Steve Golson for his insights on the issues with PLL models in a parasitics environment, jitter
and for his help in reviewing the entire paper.

SNUG San Jose 2005 111 Working with PLLs in PrimeTime

9 References

(1) Complex Clocking Situations Using PrimeTime
Paul Zimmer
Synopsys Users Group 2000 San Jose
(available at www.zimmerdesignservices.com)

(2) Working with DDRs in PrimeTime
Paul Zimmer, Andrew Cheng
Synopsys Users Group 2001 San Jose
(available at www.zimmerdesignservices.com)

(3) My Favorite DC/PT Shell Tricks
Paul Zimmer
Synopsys Users Group 2002 San Jose
(available at www.zimmerdesignservices.com)

(4) Accounting for PLL Correction in Static Timing Analysis
Solvnet article 000096.html

(5) My Head Hurts, My Timing Stinks, and I Don’t Love On-Chip Variation

Matt Weber — Silicon Logic Engineering
Available from Solvnet

SNUG San Jose 2005 112 Working with PLLs in PrimeTime

10 Appendix
10.1 The PLL model itself

When using primetime with parasitics rather than SDF, it is important that the PLL model
correctly reflect the drive and loading properties of the real PLL device. Although in many cases
the delays may cancel, the transition time effects can propagate. This is particularly true if the
clock tree connected to the PLL output doesn’t begin with a single buffer.

Getting this right isn’t as easy as you might think.
10.1.1 Modeling the PLL using a verilog wrapper

One way of modeling the PLL would be to find out from the vendor what sort of standard buffers
best represent the PLL’s inputs and outputs, then build a verilog model “wrapper” around the
empty PLL shell. In practice, this may cause problems because the parasitic extraction files will
refer to pins on the PLL that are now just internal hierarchy pins. So, you probably can’t use this
technique directly without hacking the extraction files. Still, it is useful to illustrate some of the
issues to be dealt with and to serve as a baseline.

For example, if the PLL instantiation looks like this:

PLLXYZ PLL (.OUT(pllout), .FB(pllfb), .CKREF (iclkin));

SNUG San Jose 2005 113 Working with PLLs in PrimeTime

I’ll build a 2-stage verilog model that looks like this:

module PLLXYZ (
ouT,

FB,

CKREF

)i

output OUT;

input CKREF;
input FB;

DUMMYPLL DUMMYPLL (.DUMMYOUT (pllout), .DUMMYFB (pllfb),
.DUMMYCKREF (pllrefclk));

bufbdl fbinbuf (.I(FB), .Z(pllfb));

bufbdl ckrefinbuf (.I(CKREF), .Z(pllrefclk));
bufbdl outbuf(.I(pllout), .Z(0UT));
endmodule

module DUMMYPLL (
DUMMYOUT,
DUMMYFB,
DUMMYCKREF

) 7

output DUMMYOUT;
input DUMMYCKREF;
input DUMMYFB;

endmodule
In this case, I have modeled the PLL’s i/0s as standard library buffers (bufbdl’s).

Now for the tricky bit. If | load up the data and report the timing before | have created any
clocks, | get something like this:

pt _shell> set timing report unconstrained paths true
true
pt shell> report timing -input pins -to [get pins PLL/DUMMYPLL/DUMMYFB]
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full
-delay max
-input pins
-max paths 1
Design : idc_pll example
Version: V-2004.06

LR IR R e S b I S b I Sb b I Sh b I Sb b S S S S S S db I Sb b I Sb b 3 Sb b S Sb 3k 4

SNUG San Jose 2005 114 Working with PLLs in PrimeTime

PLL/outbuf/I
(internal pin)
PLL/DUMMYPLL/DUMMYFB
(internal pin)
(none)
max

Startpoint:
Endpoint:

Path Group:
Path Type:

PLL/outbuf/I (bufbdl)
PLL/outbuf/Z (bufbdl)
PLL/OUT (PLLXYZ)
clktree root/I (bufbdl)
clktree root/z (bufbdl)
clktree_Z/I (bufbdl)
clktree_Z/Z (bufbdl)
fbdelay/I (bufbdl)
fbdelay/Z (bufbdl)
PLL/FB (PLLXYZ)
PLL/fbinbuf/I (bufbdl)
PLL/fbinbuf/Z (bufbdl)
PLL/DUMMYPLL/DUMMYFB (DUMMYPLL)
data arrival time

+ + + + A+ + +

(Path i1s unconstrained)

Now create the clocks. The output of the pll is now “PLL/outbuf/Z”, so I’ll create the pll output
clock there (“PLL/OUT” is no longer a real physical pin).

set plloutpin name {PLL/outbuf/Z}

create_clock -period 10.0 -name clkin [get_ports clkin]

set_propagated clock clkin

create_clock -period 10.0 -name pllout [get pins ${7plloutpin7name}]

set propagated clock pllout

If I re-run the report, | get this:

pt shell> report timing -input pins -to

Kk KA A KKKk h ok ok kA Ak Kk kk ok ok k& &k ok kkkk k& kk Kk Kkkkkk

Report timing

-path full
-delay max
-input pins

-max paths 1
Design idc pll example
Version: V-2004.06

LRI R e S b I b b I Sb b I b b I Sb b S S S S I S b Sb b S b I Sb b I S b

SNUG San Jose 2005 115

[get pins PLL/DUMMYPLL/DUMMYFB]

Working with PLLs in PrimeTime

Startpoint: PLL/outbuf/Z
(clock source 'pllout')
Endpoint: PLL/DUMMYPLL/DUMMYFB
(internal pin)
Path Group: (none)
Path Type: max

Point Incr Path

clock source latency 0.00

PLL/outbuf/Z (bufbdl) 0.00 r
PLL/OUT (PLLXYZ) 0.00 r
clktree root/I (bufbdl) 0.04 r
clktree root/Z (bufbdl) 0.35 r
clktree 2/I (bufbdl) 0.39 r
clktree 2/7 (bufbdl) 0.79 r
fbdelay/I (bufbdl) 0.83 r
fbdelay/Z (bufbdl) 1.23 ¢
PLL/FB (PLLXYZ) 1.23 r
PLL/fbinbuf/I (bufbdl) 1.27 ¢
PLL/fbinbuf/Z (bufbdl) 1.41 r
PLL/DUMMYPLL/DUMMYFB (DUMMYPLL) 1.41 r
data arrival time 1.41

(Path i1s unconstrained)

The startpoint has changed due to the clock, so the delay of PLL/outbuf doesn’t show up in the
report, which is to be expected. But something else has changed. Notice that the delay through
clktree_root has changed (from 0.41 to 0.31). What happened?

If we do “report_delay calculation —from clktree_root/l —to clktree root/Z” before and after the
clock creation commands and compare the files, we find that the root cause of the change is that:

(X) input_pin_transition = 0.610997
changed to:
(X) input_pin_transition = 0

The create_clock has a side-effect of forcing a O transition time on the clock driving pin.
Create_generated_clock does the same thing.

This transition time should be a function of the cell drive characteristics and the load. It
shouldn’t be 0.

One way around this is to create the clock on the “empty shell” pin
PLL/DUMMYPLL/DUMMYOQUT. The problem is that we’ll then get the net delay from there
to the PLL/outbuf/I pin, plus the cell delay of PLL/outbuf, in the clock path. In theory, these
delays should cancel, but since these aren’t real devices, I’d prefer to get rid of them.

SNUG San Jose 2005 116 Working with PLLs in PrimeTime

So, I’ll create the clock on the PLL/outbuf/I pin (which will get rid of the net delay), and use

set_annotated_delay —cell to get rid of the delay through PLL/outbuf:

set plloutpin name {PLL/outbuf/I}

set _annotated delay 0.0 -cell -from PLL/outbuf/I -to PLL/outbuf/Z

create_clock -period 10.0 -name clkin [get_ports clkin]

set_propagated clock clkin

create clock -period 10.0 -name pllout [get_pins ${ plloutpin name}]

set_propagated clock pllout

Now if we run the reports after the clocks are created, we get the same values as before the

clocks are created:

pt _shell> report timing -input pins -to
R R dh b b dh b b 2h Sh b dh Sh S b 2h Sh b S eh b b 2b Ib S 2 Sh b b Sh A Sh b 2b eb b b 2h Ib o 4

Report timing

-path full
-delay max
-input pins

-max paths 1
Design idc pll example
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

PLL/outbuf/I
(clock source
PLL/DUMMYPLL/DUMMYFB
(internal pin)
Path Group: (none)
Path Type: max

Startpoint:

Endpoint:

'pllout')

[get pins PLL/DUMMYPLL/DUMMYFB]

clock source latency
PLL/outbuf/I (bufbdl)
PLL/outbuf/zZ (bufbdl)
PLL/OUT (PLLXYZ)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
fbdelay/I (bufbdl)
fbdelay/Z (bufbdl)
PLL/FB (PLLXYZ)
PLL/fbinbuf/I (bufbdl)
PLL/fbinbuf/Z (bufbdl)
PLL/DUMMYPLL/DUMMYFB (DUMMYPLL)
data arrival time

(Path is unconstrained)

SNUG San Jose 2005

117

Working with PLLs in PrimeTime

By the way, if you look a the delay calculation on the PLL/outbuf itself, you find that PT used an
input transition time of O:

pt shell> report delay calculation —-from PLL/outbuf/I -to PLL/outbuf/Z
Kk kK K Kk k ko k ok ok Kk Kk Kk kK k ko Kk Kk ok ko k ok Kk Kk ok k ok ok ok

Report : delay calculation
Design : idc_pll example
Version: V-2004.06

KKK AKRKAAKRKA A KRR AR AR A AR A AN A A AR A A A A AR XA A XKk * K

From pin: PLL/outbuf/I
To pin: PLL/outbuf/Z
Main Library Units: 1ns 1pF 1kOhm

Library: 'cbl3fsl20 tsmc max'

Library Units: 1ns 1pF 1kOhm

Library Cell: 'bufbdl'

arc sense: positive unate
arc type: cell

Units: 1ns 1pF 1kOhm

Rise Delay

cell delay = 0.301583
Table is indexed by
(X) input pin transition = 0

What we are telling PT is that the PLL output behaves like a bufbd1 with a zero input transition
time. This may or may not be accurate — only your PLL vendor can tell you for sure. But since
this transition time is NOT a function of the load, you can use set_annotated_transition to force
this to the desired value:

SNUG San Jose 2005 118 Working with PLLs in PrimeTime

pt shell> set annotated transition 0.50 [get pins PLL/outbuf/I]
1
pt shell> report delay calculation —-from PLL/outbuf/I -to PLL/outbuf/Z

Kk kK K Kk k ko k ok ok Kk Kk Kk kK k ko Kk Kk ok ko k ok Kk Kk ok k ok ok ok
Report : delay calculation

Design : idc_pll example

Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

From pin: PLL/outbuf/I
To pin: PLL/outbuf/Z
Main Library Units: 1ns 1pF 1kOhm

Library: 'cbl3fsl20 tsmc max'

Library Units: 1ns 1pF 1kOhm

Library Cell: 'bufbdl'

arc sense: positive unate
arc type: cell

Units: 1ns 1pF 1kOhm

Rise Delay

cell delay = 0.382833
Table is indexed by
(X) input pin transition = 0.5

Note that the fake buffers PLL/fbinbuf and PLL/ckrefinbuf also have non-zero delay. So, the
source latency calculation code will need to use the buffer input pins as endpoints:

set pllfbpin name {PLL/fbinbuf/I}
set pllrefpin name {PLL/ckrefinbuf/I}

set path [get timing paths -delay max rise \
-from [get_ports clkin] \
-to [get_pins ${ pllrefpin name}] \

]

set ref delay [get_ attribute $ path arrival]
set path [get timing paths -delay max rise \
-from [get_pins ${ plloutpin name}] \
-to [get_pins ${ pllfbpin name}] \
]

set fb delay [get_ attribute $ path arrival]

10.1.2 Modeling the PLL using a gtm model
The verilog wrapper is useful for illustrating the clock transition time problem, but it isn’t the

cleanest solution because it won’t match the parasitic files. Another solution that will match the
parasitic files is to use a QTM (Quick Timing Model) model.

SNUG San Jose 2005 119 Working with PLLs in PrimeTime

Using the code in reference [4] as an example, here is the code | used to create a QTM model for
my PLL:

Make sure library has been read in

if {[sizeof_collection [get libs -quiet *]] == 0} {
read db Scell 1lib max

}

set pllname DUMMYPLL
create_gtm model Spllname
set_gtm technology -library cbl3fsl20 tsmc max

create_gtm drive_ type -1ib cell bufbdl plldrive
create_gtm load type -1ib cell bufbdl pllckrefload
create_gtm load type -1ib cell bufbdl pllfbload
create_gtm port {CKREF FB} -type input
set_gtm port load -type pllckrefload -factor 1 CKREF
set_gtm port load -type pllfbload -factor 1 FB
create_gtm port {OUT} -type output
set_gtm port drive -type plldrive OUT
#create gtm delay arc -from CKREF -to OUT -value 0.0

report gtm model
save_qgtm model -library cell -output ${pllname} -format {db lib}

Notice that I commented out the “create _qtm_delay arc” line from the example in reference [4].
More on this in the next section. Also, | added code to create drive types and load types and tied
the i/0s to these types. | modeled the PLL i/os to be bufbd1’s as in the verilog wrapper example.

When | run this in primetime, it creates two files:

DUMMYPLL_lib.db
DUMMYPLL.lib

The first one is the QTM model. The second one is a .lib description that can be used to create a
technology library model.

To link this in, we do something like this:

set link path "$link path DUMMYPLL lib.db"

SNUG San Jose 2005 120 Working with PLLs in PrimeTime

If we load everything up and time the feedback path, we get:

pt_shell> set timing report unconstrained paths true

true

pt shell> report timing -input pins -to [get pins PLL/FB]

Information: Using automatic max wire load selection group 'predcaps'. (ENV-
003)

Information: Using automatic min wire load selection group 'predcaps'. (ENV-
003)

R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing
-path full
-delay max
-input pins
-max paths 1
Design : idc_pll example
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Startpoint: PLL/OUT drive
(internal pin)

Endpoint: PLL/FB (internal pin)

Path Group: (none)

Path Type: max

Point Incr Path

PLL/OUT drive (DUMMYPLL) 0.00 0.00 r
PLL/OUT (DUMMYPLL) 0.30 + 0.30 r
clktree_root/I (bufbdl) 0.04 + 0.34 r
clktree_root/Z (bufbdl) 0.41 + 0.75 r
clktree 2/I (bufbdl) 0.04 + 0.79 r
clktree 2/7Z (bufbdl) 0.40 + 1.19 r
fbdelay/I (bufbdl) 0.04 + 1.23 ¢
fbdelay/Z (bufbdl) 0.40 + 1.63 ¢
PLL/FB (DUMMYPLL) 0.04 + 1.67 r
data arrival time 1.67

(Path is unconstrained)

This trace is very similar to the trace with the verilog wrapper. The delay of the input buffer
(fbinbuf) is gone, but the 0.30 delay of the “dummy” driving buffer (outbuf) is there, even though
the driver isn’t! So, it isn’t surprising that when we create the clock on PLL/OUT, we have the
same transition time problem as we had with the verilog wrapper:

create_clock -period 10.0 -name clkin [get_ports clkin]
set_propagated clock clkin

create clock -period 10.0 -name pllout [get pins PLL/OUT]
set propagated clock pllout

SNUG San Jose 2005 121 Working with PLLs in PrimeTime

pt shell> report timing -input pins -to [get pins PLL/FB]
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing
-path full
-delay max
-input pins
-max paths 1
Design : idc_pll example
Version: V-2004.06

KKK AR KA KA AR AR AR A A AR AN A A AR A A A A AR AR A XK Xk Kk

Startpoint: PLL/OUT (clock source 'pllout')
Endpoint: PLL/FB (internal pin)

Path Group: (none)

Path Type: max

Point Incr Path

clock source latency 0.00 0.00

PLL/OUT (DUMMYPLL) 0.00 0.00 r
clktree root/I (bufbdl) 004+ 0.04 r
clktree root/Z (bufbdl) 0.35 r
clktree 2/I (bufbdl) 0~04" + 0.39 r
clktree 2/7Z (bufbdl) 0.40 + 0.79 r
fbdelay/I (bufbdl) 0.04 + 0.83 r
fbdelay/Z (bufbdl) 0.40 + 1.23 ¢
PLL/FB (DUMMYPLL) 0.04 + 1.27 ¢
data arrival time 1.27

(Path i1s unconstrained)

But now there’s no “outbuf/I” on which to create the clock! Fortunately, there is a funny little
port on the QTM model called “OUT drive” that is the equivalent of the outbuf/I. So, we’ll
create the clock there:

create_clock -period 10.0 -name clkin [get_ports clkin]
set_propagated clock clkin

create clock -period 10.0 -name pllout [get_pins PLL/OUT drive]
set propagated clock pllout

pt shell> report timing -input pins -to [get pins PLL/FB]
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full
-delay max
-input pins
-max paths 1
Design : idc_pll example
Version: V-2004.06

LR IR R e S b I S b I Sb b I S b I b b S b S S S db I Sh b S b S b I S b

SNUG San Jose 2005 122 Working with PLLs in PrimeTime

Startpoint: PLL/OUT drive

(clock source 'pllout')

Endpoint: PLL/FB (internal pin)
Path Group: (none)

Path Type: max

Point

clock source latency
PLL/OUT drive (DUMMYPLL)
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
fbdelay/I (bufbdl)
fbdelay/7Z (bufbdl)
PLL/FB (DUMMYPLL)

data arrival time

~J
O
EBRERBRRBRBHR

(Path i1s unconstrained)

This fixes the transition time problem, but we still have the dummy buffer delay. As before, we

can use set_annotated_delay to zero this value:

pt shell> set annotated delay 0.0 -cell -from PLL/OUT drive -to PLL/OUT

1

pt _shell> report timing -input pins -to
R R b b dh dh b S 2h Sb b 2 Sh I b 2h Sh b S Sh b b 2h b 3 2 Sh b b Sh Sb b 2h dh b b 2h Ib o 4
timing

-path full

-delay max

-input pins

-max paths 1

Design idc pll example

Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

Report

Startpoint: PLL/OUT drive
(clock source 'pllout')
Endpoint: PLL/FB (internal pin)
Path Group: (none)
Path Type: max
Point

[get pins PLL/FB]

clock source latency
PLL/OUT_drive (DUMMYPLL)
PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree 2/I (bufbdl)
clktree 2/7Z (bufbdl)
fbdelay/I (bufbdl)
fbdelay/zZ (bufbdl)
PLL/FB (DUMMYPLL)

data arrival time

(Path is unconstrained)

SNUG San Jose 2005 123

Working with PLLs in PrimeTime

Since there are no dummy buffers on the inputs, the source latency calculation code can still refer
to the PLL/CKREF and PLL/FB pins.

10.1.3 Beware of the arc!

Now back to that line I commented out in the QTM model script. This line creates a timing arc
from CKREF to OUT. This time I’ll generate the model with this arc in place:

Make sure library has been read in

if {[sizeof_collection [get libs -quiet *]] == 0} {
read db Scell 1lib max

}

set pllname DUMMYPLL
create_gtm model Spllname
set_gtm technology -library cbl3fsl20 tsmc max

create_gtm drive_ type -1ib cell bufbdl plldrive
create_gtm load type -1lib cell bufbdl pllckrefload
create_gtm load type -1lib cell bufbdl pllfbload

create_gtm port {CKREF FB} -type input
set_gtm port load -type pllckrefload -factor 1 CKREF
set_gtm port load -type pllfbload -factor 1 FB
create_ gtm port {OUT} -type output
set_gtm port drive -type plldrive OUT

create_gtm delay arc -from CKREF -to OUT -value 0.0

report qgtm model
save_gtm model -library cell -output S{pllname} -format {db lib}

The reason this is in reference [4] is that they use a slightly different technique for modeling the
pll circuitry. This is discussed in more detail in the next part of the appendix.

If I load up this model and report the timing to the FB pin, | get:

pt _shell> set timing report unconstrained paths true
true
pt shell> report timing -input pins -delay max rise -to PLL/FB
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report : timing
-path full
-delay max rise
-input pins
-max paths 1
Design : idc_pll example
Version: V-2004.06

LR IR R e S b I b b I Sb dE I S b I Sb b S S S S I S Jb I Sh b S b I S b I S b

SNUG San Jose 2005 124 Working with PLLs in PrimeTime

Startpoint: clkin (input port)
Endpoint: PLL/FB (internal pin)

Path Group: (none)
Path Type: max

input external delay
clkin (in)
clkinpad/I (bufbdl)
clkinpad/Z (bufbdl)
PLL/CKREF (DUMMYPLL)

PLL/OUT drive (DUMMYPLL)

PLL/OUT (DUMMYPLL)
clktree root/I (bufbdl)
clktree root/Z (bufbdl)
clktree_Z/I (bufbdl)
clktree_Z/Z (bufbdl)
fbdelay/I (bufbdl)
fbdelay/Z (bufbdl)
PLL/FB (DUMMYPLL)

data arrival time

(Path i1s unconstrained)

+ + + +

+ o+ o+ +

Notice that the path now starts at the clkin input port and runs through the PLL. That’s fine, but
notice also that the delay on the “OUT _drive” to “OUT” path is now 0.47. Let’s look at the

delay calculation for this path:

pt shell> report delay calculation -from PLL/OUT drive -to PLL/OUT

Kok kK Kk Kk k kok ok ok ok K Kk Kk ok k ok ok ok Kk ok k ok k ok ok ok kK ok k ok ok ok ok ok

Report : delay calculation

Design : idc_pll example
Version: V-2004.06

LRI b b b I S b b Sb b I S 2 I Sb I I S S S S S db e Sb b S b I Sb 2b I Sb b

From pin:
To pin:
Main Library Units: 1lns

Library: 'DUMMYPLL 1lib'

Library Units: 1ns 1pF
Library Cell: 'DUMMYPLL'
arc sense:

arc type:

Units: 1ns 1pF 1kOhm

Rise Delay

cell delay = 0.466338
Table is indexed by

(X) input pin transition
(Y) output net total cap

SNUG San Jose 2005

PLL/OUT drive

positive unate

Working with PLLs in PrimeTime

This transition time comes from the CKREF pin.

pt shell> report timing -input pins -delay max rise -to PLL/FB -
transition time
R R SR b b dh b b dh Sh b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b Sb Sb 4
Report : timing

-path full

-delay max_rise

-input pins

-max paths 1

-transition_ time
Design : idc_pll example
Version: V-2004.06

KKK AKRKAAKRA A KRR AR AR A AR A AN A A AR A A A A AR XA A XKk h K

Startpoint: clkin (input port)
Endpoint: PLL/FB (internal pin)
Path Group: (none)

Path Type: max

input external delay 0.00 0.00 r
clkin (in) 0.26 0.26 + 0.26 ¢
clkinpad/I (bufbdl) 0.26 0.04 + 0.30 r
clkinpad/z (bufbdl) 1.44 0.70 + 1.00 r
PLL/CKREF (DUMMYPLL) 47 0.10 + 1.10 r
PLL/OUT drive (DUMMYPLL) @ 0.00 1.10 r
PLL/OUT (DUMMYPLL) 0~6 0.47 + 1.56 r
clktree_root/I (bufbdl) 0.62 0.04 + 1.60 r
clktree_root/Z (bufbdl) 0.64 0.41 + 2.01 r
clktree 2/I (bufbdl) 0.64 0.04 + 2.05 r
clktree 2/7Z (bufbdl) 0.01 0.40 + 2.45 r
fbdelay/I (bufbdl) 0.01 0.04 + 2.49 r
fbdelay/Z (bufbdl) 0.01 0.40 + 2.89 r
PLL/FB (DUMMYPLL) 0.61 0.04 + 2.93 r
data arrival time 2.93

(Path is unconstrained)

But this is not correct! The PLL output drive should be independent of the CKREF input
transition time.

SNUG San Jose 2005 126 Working with PLLs in PrimeTime

If we break this arc, we get back to the expected timing:

pt shell> report timing -input pins -delay max rise -to PLL/FB -
transition time
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing

-path full

-delay max_rise

-input pins

-max paths 1

-transition time
Design : idc_pll example
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: PLL/OUT drive
(internal pin)

Endpoint: PLL/FB (internal pin)

Path Group: (none)

Path Type: max

PLL/OUT drive (DUMMYPLL) 0.00 0.00 0.00 r
PLL/OUT (DUMMYPLL) 0.61 0.30 + 0.30 r
clktree_root/I (bufbdl) 0.61 0.04 + 0.34 r
clktree_root/Z (bufbdl) 0.64 0.41 + 0.75 r
clktree 2/I (bufbdl) 0.04 0.04 + 0.79 r
clktree 2/7Z (bufbdl) 0.01 0.40 + 1.19 r
fbdelay/I (bufbdl) 0.01 0.04 + 1.23 ¢
fbdelay/Z (bufbdl) 0.01 0.40 + 1.63 ¢
PLL/FB (DUMMYPLL) 0.61 0.04 + 1.67 r
data arrival time 1.67

(Path is unconstrained)

It might be possible to fix this by forcing transition times, but since I haven’t found any
advantage in timing through this arc, I’d rather just not have the arc (disable it using
set_disable_timing if the vendor-supplied model has it).

Note that there’s one case where the arc is desirable. If the PLL has a bypass mode for test, then
you need this arc to accurately time test mode. Ideally, the model will make this arc conditional
on the bypass mode pin(s). But if the vendor hasn’t done that, you will need to disable it using
set_disable_timing when you run functional mode STA.

SNUG San Jose 2005 127 Working with PLLs in PrimeTime

10.1.4 Vendor-supplied PLL models

It should be evident from the examples above that the details of the PLL model can be tricky to
get right. If your vendor provides a model of the PLL, make sure you know what’s inside. I got
one once that was like the verilog wrapper (instantiated buffers), but the buffers inputs were tied
low! This caused bizarre behavior in Primetime.

If you’re using parasitics, be sure to use “report_delay calculation” and examine the output
carefully to make sure the model is doing the right thing. There should not be any edge-rate
dependency of the OUT pin on the REF or FB pins (unless the vendor is sure this is real).

Or get rid of the vendor model and use the QTM method shown above.

10.2 Why | do it my way

Many people use the approach described in the Synopsys App Note (Reference [4]). This paper
wouldn’t be complete if I didn’t explain why I do it differently.

Leaving aside the minor detail of how the source latency is extracted, the Synopsys App Note
uses a fundamentally different approach than the one I have described in this paper. They create
a dummy model with a timing arc from the REF pin to the pll OUT pin. They then apply the
source latency as an annotated delay on this arc. The result is that there is only one clock — the
reference clock, which propagates through the pll with negative delay.

| see several problems with this approach:

Duty cycle will be inherited from the ref clock instead of being independent.

I don’t see how you can model jitter correctly with only one clock.

The annotated delay will get scaled by OCV.

It creates a link between the input transition time at the ref pin of the PLL and the output
driver of the PLL, which isn’t correct.

b

Although there may be solutions to these problems (I’ve never used this approach, so I’ve never
tried to find any), | think they all stem from a fundamental problem — this approach doesn 't
model reality. A real pll does not simply forward the ref clock with a negative delay, it creates a
whole new clock on its output pin. The characteristics of this clock depend on phase and
frequency information from the REF and FB inputs, but the fact remains that it is a new clock.
That’s why my approach creates a new clock on the pll OUT pin.

SNUG San Jose 2005 128 Working with PLLs in PrimeTime

10.3 Modeling duty cycle using set_clock latency early/late

The “set_clock latency” command can be used to model clock duty cycle, but only by making
use of features intended for other uses.

Here is our example circuit again:

din[_>»

din_reg

clk[>

ol kA

drnegl_reg

dnegZ_reg

dout_reg = dout

Notice that set_clock_latency has both —early/-late and —min/-max options:

pt shell> help -v set clock latency

set clock latency # Capture actual or predicted clock latency
[-rise] (Specify clock rise latency)
[-fall] (Specify clock fall latency)
[-min] (Specify clock rise and fall min condition latency)
[-max] (Specify clock rise and fall max condition latency)
[-source] (Specify clock rise and fall source latency)
[-late] (Specify clock rise and fall late source latency)
[-early] (Specify clock rise and fall early source latency)
delay (Clock latency)

(

object list

List of clocks,

ports or pins)

The —early/-late set corresponds to early and late arrival. The —min/-max set corresponds to early
and late arrival in “min-max” analysis mode. Either can be tricked into doing the duty cycle

calculation.

We’ll start with —early/-late. If we just try this out-of-the-box, it doesn’t work.

set period 10.0
set duty cycle min 0.40

set duty cycle max [expr 1.0 - $ duty cycle min]

create clock -period $ period -name clk \

[get_ports clk]
set_propagated clock clk

set_clock latency -source
[expr ($ duty cycle min
[get_clocks clk]

set_clock latency -source
[expr ($ duty cycle max
[get_clocks clk]

SNUG San Jose 2005

-fall -early \
- 0.5) * $ period]

-fall -late \
- 0.5) * $ period]

129

\

\

Working with PLLs in PrimeTime

The input and output traces are ok:

pt shell> report timing -input pins -path type full clock -from din reg -to

dnegl reg
R R S b b dh b b dh Sb b dh Sh b b Sh Sh b S Sh b b 2b b b 2 Sh b b Sh A Sb b dh db b db Sb o 4
Report : timing
-path full clock
-delay max
-input pins
-max paths 1
Design : duty cycle piclk
Version: V-2004.06

KKK A KK A KRA A KRR AR AR A A AR A AR A AR A AR A AR A AR AKXk K

Startpoint: din reg (rising edge-triggered flip-flop clocked by clk)
Endpoint: dnegl reg (rising edge-triggered flip-flop clocked by clk')

Path Group: clk
Path Type: max

clock clk (rise edge)
clock source latency
clk (in)

din reg/CP (dfnrbl)
din reg/Q (dfnrbl) <-
dnegl reg/D (dfnrbl)
data arrival time

clock clk' (rise edge)
clock source latency
clk (in)

clkinv/I (inv0d2)
clkinv/ZN (inv0d2)
dnegl reg/CP (dfnrbl)
library setup time
data required time

.00
.00
.00
.00
.00
.00
.09

E B KRB

o
o
B B Fh

data required time
data arrival time

slack (MET)

SNUG San Jose 2005 130

Working with PLLs in PrimeTime

pt_shell> report timing -input pins -path type full clock -from dneg2 reg -to

dout reg
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report timing
-path full clock
-delay max
-input pins
-max paths 1
Design duty cycle piclk

Version: V-2004.06

KKK AKRKA AR A A KRR AR AR A AR A A AR A AR A AR AR A XA A XK XX K

Startpoint: dneg2 reg
Endpoint: dout reg

(rising edge-triggered flip-flop clocked by clk')
(rising edge-triggered flip-flop clocked by clk)

o
o
B B B B HH

Path Group: clk

Path Type: max

Point Incr
clock clk' (rise edge) 5.00
clock source latency 1.00
clk (in) 0.00
clkinv/I (inv0d2) 0.00
clkinv/ZN (inv0d2) 1.00 *
dneg2 reg/CP (dfnrbl) 0.00
dneg2 reg/Q (dfnrbl) <- 0.32
dout reg/D (dfnrbl) 0.00
data arrival time

clock clk (rise edge) 10.00
clock source latency 0.00
clk (in) 0.00
dout reg/CP (dfnrbl) 0.00
library setup time -0.10

data required time

data required time
data arrival time

But the falling-edge to falling-edge trace is not:

pt shell> report timing -input pins -path type
dneg2 reg

B R R R R R R R R R R

Report timing

-path full clock
-delay max

-input pins

-max paths 1
Design duty cycle piclk
Version: V-2004.06

LR IR R e S b I b b I Sb b I b b I Sb b S S S S S I S Jb I Sh b S b I Sb b I Sb b

SNUG San Jose 2005 131

full clock -from dnegl reg -to

Working with PLLs in PrimeTime

Startpoint: dnegl reg
Endpoint: dneg2 reg

(rising edge-triggered flip-flop clocked by clk')
(rising edge-triggered flip-flop clocked by clk')

Path Group: clk

Path Type: max

Point

clock clk' (rise edge)
clock source latency
clk (in)

clkinv/I (inv0d2)
clkinv/ZN (inv0d2)

dnegl reg/CP (dfnrbl)
dnegl reg/Q (dfnrbl) <-
dneg2 reg/D (dfnrbl)
data arrival time

clock clk' (rise edge)
clock source latency
clk (in)

clkinv/I (inv0d2)
clkinv/ZN (inv0d2)
dneg2 reg/CP (dfnrbl)
library setup time
data required time

.00
.00
.00
.00
.00
.00
.09

(@]
(@]
B B B B HhH

o
o
B B Fh

data required time
data arrival time

slack (MET)

The problem here is that the launch clock has used 1.0 and the capture clock has used -1.0. This
is common path pessimism. So, if we turn on CRPR:

set timing remove clock reconvergence pessimism true

The path is now correct:

pt _shell> report timing -input pins -path type full clock -from dnegl reg -to

dneg2 reg
R R I b b b S b Sh b 2 eh S b 2h Sh b S eh b b 2b Ib b 2 Sh b b Sh Sh b 2h db b b 2h Sb o 4
Report timing
-path full clock
-delay max
-input pins
-max paths 1
Design duty cycle piclk

Version: V-2004.06

LR IR R e S b I S b I Sb b I S b I Sb b S S S S I S db I Sh b S b I Sb b I S b

SNUG San Jose 2005 132

Working with PLLs in PrimeTime

Startpoint: dnegl reg (rising edge-triggered flip-flop clocked by clk'")
Endpoint: dneg2 reg (rising edge-triggered flip-flop clocked by clk')

Path Group: clk
Path Type: max

clock clk' (rise edge)
clock source latency
clk (in)

clkinv/I (inv0d2)
clkinv/ZN (inv0d2)
dnegl reg/CP (dfnrbl)
dnegl reg/Q (dfnrbl) <-
dneg2 reg/D (dfnrbl)
data arrival time

clock clk' (rise edge)
clock source latency
clk (in)

clkinv/I (inv0d2)
clkinv/ZN (inv0d2)
dneg2 reg/CP (dfnrbl)

clock reconvergence pessimism

library setup time
data required time

.00
.00
.00
.00
.00
.00
.00
.09

o
o
B B B B HH

(@]
(@]
R B

data required time
data arrival time

I’'m uncomfortable with this approach, however, because it uses a feature intended for OCV
analaysis (CRPR) for something unrelated to OCV. And to use it in conjunction with OCV will
distort the numbers. | prefer the multiclock method.

10.4 Modeling duty cycle using set_clock _latency min/max

You can abuse the min-max version of set_clock_latency to do duty cycle analysis as well. The

commands look like this:

set_clock latency -source
[expr ($ duty cycle min
[get_clocks clk]
set_clock latency -source
[expr ($ duty cycle min
[get_clocks clk]
set_clock latency -source
[expr ($ duty cycle max
[get_clocks clk]
set_clock latency -source
[expr ($ duty cycle max
[get_clocks clk]

SNUG San Jose 2005

-fall -min -early \

- 0.5)

-fall -max -early \

- 0.5)

* $ period]

* $ period]

-fall -min -late \

- 0.5)

* $ period]

-fall -max -late \

- 0.5)

* $ period]

133

\

\

\

\

Working with PLLs in PrimeTime

Note: If you’re using a version earlier than 2004.06, PT won’t let you do the above commands
until you put it in “min-max” mode. Try something like this:

set_operating conditions \
-min cbl3fs120 tsmc _max \
-max cbl3fsl120 tsmc max

The falling-edge to falling-edge setup path looks like this:

pt_shell> report timing -input pins -path type full clock -from dnegl reg -to
dneg2 reg
R R dh b b dh b b dh Sb b 2 dh b b Sh Sh b S dh b b 2b b b 2 Sh b b Sh Sb b dh db b db Ib o 4
Report : timing
-path full clock
-delay max
-input pins
-max paths 1
Design : duty cycle piclk
Version: V-2004.06

KKK AKRKA A KA AR A AR AR A A AR A A A A AR A ARk A AR AR XXk kK

Startpoint: dnegl reg (rising edge-triggered flip-flop clocked by clk')
Endpoint: dneg2 reg (rising edge-triggered flip-flop clocked by clk')
Path Group: clk

Path Type: max

Point Incr Path
clock clk' (rise edge) 5.00 5.00
clock source latency 1.00 6.00
clk (in) 0.00 6.00 £
clkinv/I (inv0d2) 0.00 6.00 £
clkinv/ZN (inv0d2) 1.00 * 7.00 r
dnegl reg/CP (dfnrbl) 0.00 7.00 r
dnegl reg/Q (dfnrbl) <- 0.32 7.32 r
dneg2 reg/D (dfnrbl) 0.00 7.32 ¢
data arrival time 7.32
clock clk' (rise edge) 15.00 15.00
clock source latency -1.00 14.00
clk (in) 0.00 14.00 £
clkinv/I (inv0d2) 0.00 14.00 £
clkinv/ZN (inv0d2) 1.00 * 15.00 r
dneg2 reg/CP (dfnrbl) 0.00 15.00 r
clock reconvergence pessimism 2.00 17.00
library setup time -0.09 16.91
data required time 16.91
data required time 16.91
data arrival time -7.32
slack (MET) 9.59

Again, we’re dependent on CRPR to make this work.

And I still prefer the multiclock method. The reason is that I don’t like having to “overload” the
early/late or min/max number with duty cycle information. | need these values for other effects,

SNUG San Jose 2005 134 Working with PLLs in PrimeTime

and | hate to just add duty cycle into these numbers. By having separate duty cycle clocks, | can
be confident that I’'m not somehow applying duty cycle variation in cases where it doesn’t belong
just because I rolled it into early/late or min/max latency.

SNUG San Jose 2005 135 Working with PLLs in PrimeTime

